-
521
Detection of Hepatocellular Carcinoma Using Optimized miRNA Combinations and Interpretable Machine Learning Models
Published 2025-01-01“…Early screening to improve the survival rate of hepatocellular carcinoma (HCC) patients remains a critical clinical challenge. …”
Get full text
Article -
522
Development and validation of a risk prediction model for depression in patients with chronic obstructive pulmonary disease
Published 2025-07-01“…Objective This study aimed to develop a machine learning-based model to predict depression risk in COPD patients, utilizing interpretable features from clinical and demographic data to support early intervention. …”
Get full text
Article -
523
Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA
Published 2025-06-01“…In response to this challenge, this study constructed a collaborative optimization framework based on the Kriging surrogate model and the multi-island genetic algorithm (MIGA). …”
Get full text
Article -
524
Artificial Intelligence and Machine Learning Models for Predicting Drug-Induced Kidney Injury in Small Molecules
Published 2024-11-01“…Machine learning (ML) models were developed using four algorithms: Ridge Logistic Regression (RLR), Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN). …”
Get full text
Article -
525
A warning model for predicting patient admissions to the intensive care unit (ICU) following surgery
Published 2025-06-01“…LASSO regression and random forest algorithms were used to screen clinical variables related to postoperative ICU admission. …”
Get full text
Article -
526
Machine learning-based prognostic prediction model of pneumonia-associated acute respiratory distress syndrome
Published 2025-07-01“…The AUC value, AP value, accuracy, sensitivity, specificity, Brier score, and F 1 score were used to evaluate the performance of the models and pick the optimal model. Finally, the SHAP feature importance map was drawn to explain the optimal model.Results10 key variables, namely LAR, Lac, pH, age, PO2/FiO2, ALB, BMI, TP, PT, DBIL were screened using the filtration method. …”
Get full text
Article -
527
A deep learning model to predict Ki-67 positivity in oral squamous cell carcinoma
Published 2024-12-01“…Aside from classification, detection, and segmentation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory activity, lowering consumable usage and turnaround time. …”
Get full text
Article -
528
The modeling of two-dimensional vortex flows in a cylindrical channel using parallel calculations on a supercomputer
Published 2022-03-01“…The methods of mathematical modeling were used. A parallel algorithm for solving two-dimensional equations of gas dynamics in cylindrical coordinates (r, z, t) was developed and a new version of the NUTCY_ps program created. …”
Get full text
Article -
529
A negative combined effect of exposure to maternal Mn-Cu-Rb-Fe metal mixtures on gestational anemia, and the mediating role of creatinine in the Guangxi Birth Cohort Study (GBCS):...
Published 2025-07-01“…We utilized twelve machine learning (ML) algorithms to independently screen for effective metal mixtures, assess their combined impacts and dose-response relationships on gestational anemia, and estimate the mediating role of kidney function. …”
Get full text
Article -
530
An Updated Systematic Review on Asthma Exacerbation Risk Prediction Models Between 2017 and 2023: Risk of Bias and Applicability
Published 2025-04-01“…We then applied the Prediction Risk of Bias Assessment tool (PROBAST) to assess the risk of bias and applicability of the included models.Results: Of 415 studies screened, 10 met eligibility criteria, comprising 41 prediction models. …”
Get full text
Article -
531
Fuzzy Decision-Making Analysis of Quantitative Stock Selection in VR Industry Based on Random Forest Model
Published 2022-01-01“…Different from the analysis of quantitative stock selection by constructing a logistics multifactor stock selection model in the existing research, the research mainly adopts the random forest algorithm based on fuzzy mathematics to construct the initial investment strategy portfolio. …”
Get full text
Article -
532
A Small-Sample Scenario Optimization Scheduling Method Based on Multidimensional Data Expansion
Published 2025-06-01“…Firstly, based on spatial correlation, the daily power curves of PV power plants with measured power are screened, and the meteorological similarity is calculated using multicore maximum mean difference (MK-MMD) to generate new energy output historical data of the target distributed PV system through the capacity conversion method; secondly, based on the existing daily load data of different types, the load historical data are generated using the stochastic and simultaneous sampling methods to construct the full historical dataset; subsequently, for the sample imbalance problem in the small-sample scenario, an oversampling method is used to enhance the data for the scarce samples, and the XGBoost PV output prediction model is established; finally, the optimal scheduling model is transformed into a Markovian decision-making process, which is solved by using the Deep Deterministic Policy Gradient (DDPG) algorithm. …”
Get full text
Article -
533
Development of an ensemble prediction model for acute graft-versus-host disease in allogeneic transplantation based on machine learning
Published 2025-07-01“…Then fifteen algorithms were used to establish models, and an ensemble model was established through soft voting based on the top five performance algorithms. …”
Get full text
Article -
534
Integrated multi-omics analysis and predictive modeling of heart failure using sepsis-related gene signature.
Published 2025-01-01“…<h4>Conclusion</h4>The model constructed through sepsis-related characteristic genes provides a highly advantageous method for predicting HF, and the characteristic genes we have screened may be potential biomarkers for predicting HF. …”
Get full text
Article -
535
Machine learning-based coronary heart disease diagnosis model for type 2 diabetes patients
Published 2025-05-01“…Five machine learning algorithms, including Logistic regression, Support Vector Machine (SVM), Random Forest (RF), eXtreme gradient boosting (XgBoost), and Light Gradient Boosting Machine (LightGBM), were selected for modeling. …”
Get full text
Article -
536
A Predictive Model for Secondary Posttonsillectomy Hemorrhage in Pediatric Patients: An 8‐Year Retrospective Study
Published 2025-02-01“…Univariate logistic regression analysis was used to screen features. Multivariate logistic regression and seven machine learning algorithms were used to construct predictive models. …”
Get full text
Article -
537
Practical applications of methods to incorporate patient preferences into medical decision models: a scoping review
Published 2025-03-01“…Abstract Background Algorithms and models increasingly support clinical and shared decision-making. …”
Get full text
Article -
538
Accurate prediction of mediolateral episiotomy risk during labor: development and verification of an artificial intelligence model
Published 2025-03-01“…Results Twenty eight factors influencing mediolateral episiotomy were screened. The model evaluation results showed that the SVM model has the best prediction ability among the six models, with an accuracy of 0.793, a recall rate of 0.981, a precision rate of 0.790, and a F1 value of 0.875. …”
Get full text
Article -
539
Development and validation of an explainable machine learning model for predicting osteoporosis in patients with type 2 diabetes mellitus
Published 2025-08-01“…Potential predictive features were identified using univariate analysis, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm. Eight supervised ML algorithms were applied to construct predictive models. …”
Get full text
Article -
540
Comparative Analysis of Osteoarthritis Therapeutics: A Justification for Harnessing Retrospective Strategies via an Inverted Pyramid Model Approach
Published 2024-10-01“…In comparison to the prospective approach, the retrospective strategy is likely more cost-effective, more widely applicable, and does not necessitate thorough and invasive genetic screening. …”
Get full text
Article