Showing 601 - 620 results of 1,420 for search '(((model OR ((more OR more) OR more)) OR more) OR made) screening algorithm', query time: 0.20s Refine Results
  1. 601

    A risk signature constructed by Tregs-related genes predict the clinical outcomes and immune therapeutic response in kidney cancer by Gang Li, Jingmin Cui, Tao Li, Wenhan Li, Peilin Chen

    Published 2025-01-01
    “…Through the machine learning algorithm—Boruta, the potentially important KTRGs were screened further and submitted to construct a risk model. …”
    Get full text
    Article
  2. 602

    Prognostic model of lung adenocarcinoma from the perspective of cancer-associated fibroblasts using single-cell and bulk RNA-sequencing by Jiarui Zhao, Chuanqing Jing, Rui Fan, Wei Zhang

    Published 2025-07-01
    “…Further, our inverse convolution algorithm showed that MyCAFs have prognostic potential in LUAD, and via LASSO-COX model regression, we obtained a MyCAFs-related prognostic model. …”
    Get full text
    Article
  3. 603

    Machine learning for epithelial ovarian cancer platinum resistance recurrence identification using routine clinical data by Li-Rong Yang, Mei Yang, Liu-Lin Chen, Yong-Lin Shen, Yuan He, Zong-Ting Meng, Wan-Qi Wang, Feng Li, Zhi-Jin Liu, Lin-Hui Li, Yu-Feng Wang, Xin-Lei Luo

    Published 2024-11-01
    “…Following this screening process, five machine learning algorithms were employed to develop predictive models based on the selected variables. …”
    Get full text
    Article
  4. 604
  5. 605

    Integrating machine learning models with multi-omics analysis to decipher the prognostic significance of mitotic catastrophe heterogeneity in bladder cancer by Haojie Dai, Zijie Yu, You Zhao, Ke Jiang, Zhenyu Hang, Xin Huang, Hongxiang Ma, Li Wang, Zihao Li, Ming Wu, Jun Fan, Weiping Luo, Chao Qin, Weiwen Zhou, Jun Nie

    Published 2025-04-01
    “…Subsequently by multivariate cox regression as well as survshap(t) model we screened core prognostic gene and identified it by Mendelian randomization. …”
    Get full text
    Article
  6. 606

    Two-Stage Dispatch of CCHP Microgrid Based on NNC and DMC by Suhao CHEN, Yue WU, Wei ZENG, Xiaohui YANG, Xiaopeng WANG, Yunfei WU

    Published 2024-02-01
    “…In the online optimization stage, a finite-time domain optimization model based on dynamic matrix control algorithm is established to track and optimize the offline optimization results with feedback correction to reduce the influence of uncertainty factors. …”
    Get full text
    Article
  7. 607

    Exploring the association between vitamin D levels and dyslipidemia risk: insights from machine learning and generalized additive models by Yin Tianxiu, Zhang Chen, Liu Yuxiang, Zhu Xiaoyue, Hu Jingyao, Guo Haijian, Wang Bei

    Published 2025-08-01
    “…Subsequently, multiple logistic regression and a generalized additive model (GAM) were utilized to construct models analyzing the association between vitamin D levels and dyslipidemia.ResultsIn our study, the XGboost machine learning algorithm explored the relative importance of all included variables, confirming a robust association between vitamin D levels and dyslipidemia. …”
    Get full text
    Article
  8. 608

    Preliminary exploration and application research on the model of gathering distillate according to the quality based on Fourier transform near infrared spectroscopy by LIAO Li, ZHANG Guiyu, ZOU Yongfang, ZHU Xuemei, PENG Houbo, ZHANG Wei, LI Yan

    Published 2025-04-01
    “…The spectrum was obtained by Fourier transform near-infrared spectroscopy (FT-NIR), and the spectrum pretreatment and wavelength screening were performed, the regression prediction model was established based on the principal components, and the model of gathering distillate according to the quality was constructed by random forest (RF). …”
    Get full text
    Article
  9. 609

    Machine learning models predict risk of lower extremity deep vein thrombosis in hospitalized patients with spontaneous intracerebral hemorrhage by Weizhi Qiu, Penglei Cui, Shaojie Li, Zhenzhou Tang, Jiani Chen, Jiayin Wang, Yasong Li

    Published 2025-07-01
    “…Five machine learning algorithms were used to construct the prediction model and the model accuracy was evaluated by ROC curves. …”
    Get full text
    Article
  10. 610

    Progress and current trends in prediction models for the occurrence and prognosis of cancer and cancer-related complications: a bibliometric and visualization analysis by Siyu Li, Wenrui Li, Xiaoxiao Wang, Wanyi Chen

    Published 2025-07-01
    “…Emerging modeling techniques, such as neural networks and deep learning algorithms, are likely to play a pivotal role in current and future cancer-related prediction model research. …”
    Get full text
    Article
  11. 611

    Development of a neural network-based risk prediction model for mild cognitive impairment in older adults with functional disability by Deyan Liu, Yuge Tian, Min Liu, Shangjian Yang

    Published 2025-06-01
    “…LASSO regression, combined with univariable and multivariable logistic regression, was employed to select feature variables for predictive modeling. Seven machine learning algorithms, including logistic regression, decision tree, random forest, support vector machine, gradient boosting decision tree, k-nearest neighbors, and neural network, were used to develop predictive models. …”
    Get full text
    Article
  12. 612

    Developing a logistic regression model to predict spontaneous preterm birth from maternal socio-demographic and obstetric history at initial pregnancy registration by Brenda F. Narice, Mariam Labib, Mengxiao Wang, Victoria Byrne, Joanna Shepherd, Z. Q. Lang, Dilly OC Anumba

    Published 2024-10-01
    “…Abstract Background Current predictive machine learning techniques for spontaneous preterm birth heavily rely on a history of previous preterm birth and/or costly techniques such as fetal fibronectin and ultrasound measurement of cervical length to the disadvantage of those considered at low risk and/or those who have no access to more expensive screening tools. Aims and objectives We aimed to develop a predictive model for spontaneous preterm delivery < 37 weeks using socio-demographic and clinical data readily available at booking -an approach which could be suitable for all women regardless of their previous obstetric history. …”
    Get full text
    Article
  13. 613

    Learning from the machine: is diabetes in adults predicted by lifestyle variables? A retrospective predictive modelling study of NHANES 2007–2018 by Efrain Riveros Perez, Bibiana Avella-Molano

    Published 2025-03-01
    “…This study is innovative in its integration of machine learning algorithms to predict type 2 diabetes based solely on non-invasive, easily accessible lifestyle and anthropometric variables, demonstrating the potential of data-driven models for early risk assessment without requiring laboratory tests. …”
    Get full text
    Article
  14. 614

    Prediction of Reactivation After Antivascular Endothelial Growth Factor Monotherapy for Retinopathy of Prematurity: Multimodal Machine Learning Model Study by Rong Wu, Yu Zhang, Peijie Huang, Yiying Xie, Jianxun Wang, Shuangyong Wang, Qiuxia Lin, Yichen Bai, Songfu Feng, Nian Cai, Xiaohe Lu

    Published 2025-04-01
    “…ObjectiveTo develop and validate prediction models for reactivation after anti-VEGF intravitreal injection in infants with ROP using multimodal machine learning algorithms. …”
    Get full text
    Article
  15. 615

    Non-Invasive Glucose Monitoring Using Optical Sensors and Machine Learning: A Predictive Model for Nutritional and Health Assessment by Heru Agus Santoso, Nur Setiawati Dewi, Susilo, Arga Dwi Pambudi, Hanif Pandu Suhito, Iman Dehzangi

    Published 2025-01-01
    “…The IoT-based architecture enables seamless integration with cloud computing platforms, allowing remote access and scalability for large-scale population-level screening and monitoring. The system captures glucose-related optical signals, which are analyzed using various machine learning algorithms, including a novel Convolutional Neural Network&#x2013;Attention Hybrid Model (CNN-AHM). …”
    Get full text
    Article
  16. 616
  17. 617

    Machine Learning Model for Predicting Pathological Invasiveness of Pulmonary Ground‐Glass Nodules Based on AI‐Extracted Radiomic Features by Guozhen Yang, Yuanheng Huang, Huiguo Chen, Weibin Wu, Yonghui Wu, Kai Zhang, Xiaojun Li, Jiannan Xu, Jian Zhang

    Published 2025-08-01
    “…This study aimed to develop a machine learning (ML)–based model using artificial intelligence (AI)‐extracted CT radiomic features to predict the invasiveness of GGNs. …”
    Get full text
    Article
  18. 618

    In-Silico discovery of novel cephalosporin antibiotic conformers via ligand-based pharmacophore modelling and de novo molecular design by Rayhan Chowdhury, Samia Akter Saima, Md. Al Amin, Md. Kawsar Habib, Ramisa Binti Mohiuddin, Ali Mohamod Wasaf Hasan, Roksana Khanam, Shahin Mahmud

    Published 2025-09-01
    “…The generated pharmacophore model, with a score of 0.9268, was utilized to screen a drug library, initially assessing 19 compounds. …”
    Get full text
    Article
  19. 619

    Development of a predictive model for risk factors of multidrug-resistant bacterial pneumonia in critically ill post-neurosurgical patients by Aixiang Hu, Dayan Ma, Yanni Lei, Fangqiang Li, Xi Wang, Yuewei Zhang

    Published 2025-06-01
    “…However, existing prediction frameworks exhibit limitations in elucidating the relative importance of risk factors, thereby impeding precise clinical decision-making and individualized patient management.ObjectiveTo evaluate the performance of six ensemble classification algorithms and three single classification algorithms in predicting MDR-BP risk factors among neurosurgical postoperative critically ill patients, identify the optimal predictive model, and determine key influential factors.MethodsWe conducted a retrospective study involving 750 neurosurgical patients admitted to a neurosurgery center at a tertiary hospital in Beijing between January 2020 and December 2023. …”
    Get full text
    Article
  20. 620