Showing 541 - 560 results of 1,420 for search '(((model OR ((more OR more) OR more)) OR more) OR made) screening algorithm', query time: 0.21s Refine Results
  1. 541

    Development and validation of an explainable machine learning model for predicting osteoporosis in patients with type 2 diabetes mellitus by Qipeng Wei, Zihao Liu, Xiaofeng Chen, Hao Li, Weijun Guo, Qingyan Huang, Jinxiang Zhan, Shiji Chen, Dongling Cai, Dongling Cai

    Published 2025-08-01
    “…Potential predictive features were identified using univariate analysis, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm. Eight supervised ML algorithms were applied to construct predictive models. …”
    Get full text
    Article
  2. 542

    Research Trends on Metabolic Syndrome in Digital Health Care Using Topic Modeling: Systematic Search of Abstracts by Kiseong Lee, Yoongi Chung, Ji-Su Kim

    Published 2024-12-01
    “…The methodological approach included text preprocessing, text network analysis, and topic modeling using the BERTopic algorithm. …”
    Get full text
    Article
  3. 543

    AI driven cardiovascular risk prediction using NLP and Large Language Models for personalized medicine in athletes by Ang Li, Yunxin Wang, Hongxu Chen

    Published 2025-06-01
    “…This study explores the innovative applications of Natural Language Processing (NLP) and Large Language Models (LLMs) in biomedical diagnostics, particularly for AI-driven arrhythmia detection, hypertrophic cardiomyopathy (HCM) in athletes, and personalized medicine. …”
    Get full text
    Article
  4. 544

    Remote Sensing for Urban Biodiversity: A Review and Meta-Analysis by Michele Finizio, Federica Pontieri, Chiara Bottaro, Mirko Di Febbraro, Michele Innangi, Giovanna Sona, Maria Laura Carranza

    Published 2024-11-01
    “…Our analysis incorporated technical (e.g., sensor, platform, algorithm), geographic (e.g., country, city extent, population) and ecological (biodiversity target, organization level, biome) meta-data, examining their frequencies, temporal trends (Generalized Linear Model—GLM), and covariations (Cramer’s V). …”
    Get full text
    Article
  5. 545

    Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao, Tongyu Xu

    Published 2025-08-01
    “…The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. …”
    Get full text
    Article
  6. 546

    Design and refinement of a clinical trial staffing model within the evolving landscape of oncology clinical trials by Ellen Siglinsky, Hannah Phan, Silviya Meletath, Amber Neal, David E. Gerber, Asal Rahimi, Erin L. Williams

    Published 2025-06-01
    “…We developed and evaluated a staffing model designed to meet this need. Methods: To address individual protocol acuity, the model's algorithms include metrics to account for visit frequency, and the quantity, and types of research-related procedures. …”
    Get full text
    Article
  7. 547

    Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review by Jie Li, Manli Zhu, Li Yan

    Published 2024-12-01
    “…Background With the development of artificial intelligence, the application of machine learning to develop predictive models for sepsis-associated acute kidney injury has made potential breakthroughs in early identification, grading, diagnosis, and prognosis determination.Methods Here, we conducted a systematic search of the PubMed, Cochrane Library, Embase (Ovid), Web of Science, and Scopus databases on April 28, 2023, and screened relevant literature. …”
    Get full text
    Article
  8. 548

    Machine learning based predictive modeling and risk factors for prolonged SARS-CoV-2 shedding by Yani Zhang, Qiankun Li, Haijun Duan, Liang Tan, Ying Cao, Junxin Chen

    Published 2024-11-01
    “…This study involved a large cohort of 56,878 hospitalized patients, and we leveraged the XGBoost algorithm to establish a predictive model based on these features. …”
    Get full text
    Article
  9. 549

    Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth by Rui Zhou, Ziqian Liu, Tongtong Wu, Xianwei Pan, Tongtong Li, Kaiting Miao, Yuru Li, Xiaohui Hu, Haigang Wu, Andrew M. Hemmings, Beier Jiang, Zhenzhen Zhang, Ning Liu

    Published 2024-12-01
    “…Identification of new selective EGFR-T790M inhibitors has proven challenging through traditional screening platforms. With great advances in computer algorithms, machine learning improved the screening rates of molecules at full chemical spaces, and these molecules will present higher biological activity and targeting efficiency. …”
    Get full text
    Article
  10. 550

    Oxidative stress-related genes in uveal melanoma: the role of CALM1 in modulating oxidative stress and apoptosis and its prognostic significance by Yue Wu, Xiaoyan Cai, Menghan Hu, Runyan Cao, Yong Wang

    Published 2025-08-01
    “…Protein–protein interaction (PPI) networks were constructed to identify hub genes, and machine learning algorithms were utilized to screen for diagnostic genes, employing methods such as least absolute shrinkage and selection operator (LASSO) regression, random forest, support vector machine (SVM), gradient boosting machine (GBM), neural network algorithm (NNET), and eXtreme gradient boosting (XGBoost). …”
    Get full text
    Article
  11. 551

    Civil Aircraft Landing Attitude Ultra-Limit Warning System Based on mRMR-LSTM by Fei Lu, Tong Jing, Chunsheng Xie, Haonan Chen

    Published 2025-06-01
    “…Then, the Max-Relevance and Min-Redundancy algorithm was applied to screen the QAR (Quick Access Recorder) parameters with the highest correlation with the predictor variables, and the LSTM network model was established to predict the pitch and roll angles of the aircraft landing, respectively. …”
    Get full text
    Article
  12. 552

    Construction and validation of a machine learning based prognostic prediction model for children with traumatic brain injury by Yongwei Wei, Jiandong Wang, Yu Su, Fan Zhou, Huaili Wang

    Published 2025-05-01
    “…Then, the risk scores and other indicators were used to construct an extended prediction model through the extreme gradient boosting (XGBoost) algorithm. …”
    Get full text
    Article
  13. 553
  14. 554

    Prognosis modelling of adverse events for post-PCI treated AMI patients based on inflammation and nutrition indexes by Liu Yang, Li Du, Yuanyuan Ge, Muhui Ou, Wanyan Huang, Xianmei Wang

    Published 2025-01-01
    “…Logistic Regression was used to screen for factors that were significant for ML model establishment. …”
    Get full text
    Article
  15. 555

    Parameter Sensitivity Analysis and Irrigation Regime Optimization for Jujube Trees in Arid Regions Using the WOFOST Model by Shihao Sun, Yingjie Ma, Pengrui Ai, Ming Hong, Zhenghu Ma

    Published 2025-08-01
    “…In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but their predictive accuracy is often compromised by parameter uncertainty. …”
    Get full text
    Article
  16. 556

    Development and Validation of the Promising PPAR Signaling Pathway-Based Prognostic Prediction Model in Uterine Cervical Cancer by Yan Zhang, Xing Li, Jun Zhang, Lin Mao, Zou Wen, Mingliang Cao, Xuefeng Mu

    Published 2023-01-01
    “…Furthermore, cervical cancer patients with different PPAR scores show different sensitivity to immune checkpoint therapy. In order to screen the genes to serve as the best biomarker for cervical cancer patients, we then construct the PPAR-based prognostic prediction model. …”
    Get full text
    Article
  17. 557
  18. 558

    Systematic Construction and Validation of a Novel Ferroptosis-Related Gene Model for Predicting Prognosis in Cervical Cancer by Wentao Qin, Can He, Daqiong Jiang, Yang Gao, Yu Chen, Min Su, Yuanjun Yang, Zhao Yang, Hongbing Cai, Hua Wang

    Published 2022-01-01
    “…The prediction model was verified by the nomogram integrating clinical characteristics; the GSE44001 dataset was used as an external verification. …”
    Get full text
    Article
  19. 559

    A web-based prediction model for brain metastasis in non-small cell lung cancer patients by Jianing Chen, Li Wang, Li Liu, Qi Wang, Jing Zhao, Xin Yu, Shiji Zhang, Chunxia Su

    Published 2025-07-01
    “…Subsequently, seven machine learning models were constructed employing diverse algorithms, namely Logistic Regression (LR), Classification and Regression Tree (CART), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting (XGBOOST). …”
    Get full text
    Article
  20. 560