Showing 281 - 300 results of 1,436 for search '(((mode OR more) OR made) OR model) screening algorithm', query time: 0.62s Refine Results
  1. 281

    Diagnosis of bipolar disorder based on extracted significant biomarkers using bioinformatics and machine learning algorithms by Hamid Mohseni, Massoud Sokouti, Akram Nezhadi, Ali Sayadi

    Published 2025-04-01
    “…Conclusion. We presented two models to diagnose bipolar disorder. One model was developed using artificial neural network and tanh functions and the other model was developed using decision tree algorithm. …”
    Get full text
    Article
  2. 282

    Research on Investment Estimation of Prefabricated Buildings Based on Genetic Algorithm Optimization Neural Network by Jin Gao, Wanhua Zhao

    Published 2025-03-01
    “…Starting from the investment decision-making stage of construction projects, this paper analyses the characteristics of prefabricated investment estimation and the relevant literature on the characteristics of prefabricated construction projects, uses the rough set attribute reduction algorithm to screen the key engineering characteristic factors, and establishes a BP neural network model optimized by genetic algorithm to estimate and analyze the investment of completed prefabricated construction projects. …”
    Get full text
    Article
  3. 283

    Apply a Screensaver Template for Windows 98 by Zuhor Hasan, Ahmed Nori, Asmaa Hamo

    Published 2005-12-01
    “…This paper involves designing graphics model for displaying and working under Windows98 operating system called Screen Saver, which is considered as one of the most significant desktop settings. …”
    Get full text
    Article
  4. 284

    Screening of Aβ and phosphorylated tau status in the cerebrospinal fluid through machine learning analysis of portable electroencephalography data by Masahiro Hata, Yuki Miyazaki, Kohji Mori, Kenji Yoshiyama, Shoshin Akamine, Hideki Kanemoto, Shiho Gotoh, Hisaki Omori, Atsuya Hirashima, Yuto Satake, Takashi Suehiro, Shun Takahashi, Manabu Ikeda

    Published 2025-01-01
    “…A total of 102 patients, both with and without AD-related biomarker changes (amyloid beta and phosphorylated tau), were recorded using a 2-minute resting-state portable EEG. A machine-learning algorithm then analyzed the EEG data to identify these biomarker changes. …”
    Get full text
    Article
  5. 285

    AI-Assisted Detection for Early Screening of Acute Myeloid Leukemia Using Infrared Spectra and Clinical Biochemical Reports of Blood by Chuan Zhang, Jialun Li, Wenda Luo, Sailing He

    Published 2025-03-01
    “…Acute myeloid leukemia (AML) accounts for most cases of adult leukemia, and our goal is to screen out some AML from adults. In this work, we introduce an AI-enhanced system designed to facilitate early screening and diagnosis of AML among adults. …”
    Get full text
    Article
  6. 286

    Two-Step Screening for Depression and Anxiety in Patients with Cancer: A Retrospective Validation Study Using Real-World Data by Bryan Gascon, Joel Elman, Alyssa Macedo, Yvonne Leung, Gary Rodin, Madeline Li

    Published 2024-10-01
    “…<b>Conclusions:</b> The present study is among the first to demonstrate that a two-step screening algorithm for depression may improve depression screening in cancer using real-world data. …”
    Get full text
    Article
  7. 287
  8. 288

    Potential use of saliva infrared spectra and machine learning for a minimally invasive screening test for congenital syphilis in infants by Deise Cristina Dal’Ongaro, Cicero Cena, Bruno Spolon Marangoni, Daniele A. Soares-Marangoni

    Published 2025-07-01
    “…When applying Quadratic Standard Normal Variate preprocessing with LOOCV, the model achieved 90% accuracy, 100% sensitivity, and 80% specificity. …”
    Get full text
    Article
  9. 289

    Cervical cancer demystified: exploring epidemiology, risk factors, screening, treatment modalities, preventive measures, and the role of artificial intelligence by N. Mohammad, M. Khan, M. Maqsood, A. H. K. Naseeb

    Published 2025-05-01
    “…However, disparities persist due to limited healthcare infrastructure and access to routine screening. AI-driven technologies, including deep learning algorithms and machine learning models, are emerging as valuable tools in cervical cancer detection, risk assessment, and treatment planning. …”
    Get full text
    Article
  10. 290
  11. 291
  12. 292

    Artificial Intelligence With Neural Network Algorithms in Pediatric Astrocytoma Diagnosis: A Systematic Review by Floresya K. Farmawati, Della W.A. Nurwakhid, Tifani A. Pradhea, Rayyan Fitriasa, Hutami H. Arrahmi, Muhana F. Ilyas, Fadhilah T. Nur

    Published 2025-02-01
    “…The AI models exhibited performance levels comparable to or exceeding that of expert radiologists, with metrics such as tumor classification accuracy of 92% and high values of the area under the receiver operating characteristic curve.Conclusions: AI with neural network algorithms shows significant promise in enhancing accuracy of pediatric astrocytoma diagnosis. …”
    Get full text
    Article
  13. 293

    Machine learning prediction of non-attendance to postpartum glucose screening and subsequent risk of type 2 diabetes following gestational diabetes. by Nishanthi Periyathambi, Durga Parkhi, Yonas Ghebremichael-Weldeselassie, Vinod Patel, Nithya Sukumar, Rahul Siddharthan, Leelavati Narlikar, Ponnusamy Saravanan

    Published 2022-01-01
    “…<h4>Objective</h4>The aim of the present study was to identify the factors associated with non-attendance of immediate postpartum glucose test using a machine learning algorithm following gestational diabetes mellitus (GDM) pregnancy.…”
    Get full text
    Article
  14. 294

    Saliva-derived transcriptomic signature for gastric cancer detection using machine learning and leveraging publicly available datasets by Catarina Lopes, Andreia Brandão, Manuel R. Teixeira, Mário Dinis-Ribeiro, Carina Pereira

    Published 2025-05-01
    “…Leveraging transcriptomic data from the Gene Expression Omnibus (GEO), we constructed and validated predictive models through machine learning algorithms within the tidymodels framework. …”
    Get full text
    Article
  15. 295

    Data Mining and Analysis of the Compatibility Law of Traditional Chinese Medicines Based on FP-Growth Algorithm by Shuchun Zhou

    Published 2021-01-01
    “…In terms of compatibility law of traditional Chinese antiviral prescriptions, this paper studied the compatibility law of traditional Chinese antiviral prescriptions based on the FP-growth algorithm and made exploratory research on the compatibility law information of 961 traditional classical antiviral prescriptions. …”
    Get full text
    Article
  16. 296
  17. 297

    Identifying Molecular Properties of Ataxin-2 Inhibitors for Spinocerebellar Ataxia Type 2 Utilizing High-Throughput Screening and Machine Learning by Smita Sahay, Jingran Wen, Daniel R. Scoles, Anton Simeonov, Thomas S. Dexheimer, Ajit Jadhav, Stephen C. Kales, Hongmao Sun, Stefan M. Pulst, Julio C. Facelli, David E. Jones

    Published 2025-05-01
    “…The molecular descriptor data (MD model) was analyzed separately from the experimentally determined screening data (S model) as well as together (MD-S model). …”
    Get full text
    Article
  18. 298

    Surrogate-assisted global and distributed local collaborative optimization algorithm for expensive constrained optimization problems by Xiangyong Liu, Zan Yang, Jiansheng Liu, Junxing Xiong, Jihui Huang, Shuiyuan Huang, Xuedong Fu

    Published 2025-01-01
    “…For global surrogate-assisted collaborative evolution phase, the global candidate set is generated through classification collaborative mutation operations to alleviate the pre-screening pressure of the surrogate model. For local surrogate-assisted phase, a distributed central region local exploration is designed to achieve intensively search for promising distributed local areas which are located by affinity propagation clustering and mathematical modeling. …”
    Get full text
    Article
  19. 299

    Optimizing protein-ligand docking through machine learning: algorithm selection with AutoDock Vina by Ala’ Omar Hasan Zayed

    Published 2025-07-01
    “…Abstract Context Understanding protein-ligand interactions is fundamental to drug design, where optimizing docking parameter selection can potentially enhance computational efficiency and resource allocation in virtual screening. While numerous algorithms exist for protein-ligand docking, achieving an optimal balance between accuracy and computational speed remains challenging. …”
    Get full text
    Article
  20. 300

    The Development of a Brief but Comprehensive Therapeutic Assessment Protocol for the Screening and Support of Youth in the Community to Address the Youth Mental Health Crisis by Margaret Danielle Weiss, Eleanor Castine Richards, Danta Bien-Aime, Taylor Witkowski, Peyton Williams, Katie E. Holmes, Dharma E. Cortes, Miriam C. Tepper, Philip S. Wang, Rajendra Aldis, Nicholas Carson, Benjamin Le Cook

    Published 2024-11-01
    “…Objective: The objective of this study was to explore the acceptability and feasibility of a therapeutic assessment protocol for the Screening and Support of Youth (SASY). SASY provides brief but comprehensive community-based screening and support for diverse youth in the community. …”
    Get full text
    Article