Showing 221 - 240 results of 1,436 for search '(((mode OR model) OR made) OR more) screening algorithm', query time: 0.21s Refine Results
  1. 221

    Screening OSA in Chinese Smart Device Consumers: A Real-World Arrhythmia-Related Study by Chen Y, Zhang H, Li J, Xu P, Guo Y, Xie L

    Published 2025-04-01
    “…Our previous study validated an algorithm-based photoplethysmography (PPG) smartwatch for OSA risk detection.Objective: This study aimed to characterize OSA features and assess its association with arrhythmia risk among smart wearable device (SWD) consumers in China in a real-world setting.Methods: Between December 15, 2019, and January 31, 2022, SWD consumers across China were screened for OSA risk using HUAWEI devices. …”
    Get full text
    Article
  2. 222

    Efficient text-to-video retrieval via multi-modal multi-tagger derived pre-screening by Yingjia Xu, Mengxia Wu, Zixin Guo, Min Cao, Mang Ye, Jorma Laaksonen

    Published 2025-03-01
    “…In this work, we present a plug-and-play multi-modal multi-tagger-driven pre-screening framework, which pre-screens a substantial number of videos before applying any TVR algorithms, thereby efficiently reducing the search space of videos. …”
    Get full text
    Article
  3. 223
  4. 224

    Preterm preeclampsia screening and prevention: a comprehensive approach to implementation in a real-world setting by Stefania Ronzoni, Shamim Rashid, Aimee Santoro, Elad Mei-Dan, Jon Barrett, Nanette Okun, Tianhua Huang

    Published 2025-01-01
    “…Abstract Background Preeclampsia significantly impacts maternal and perinatal health. Early screening using advanced models and primary prevention with low-dose acetylsalicylic acid for high-risk populations is crucial to reduce the disease’s incidence. …”
    Get full text
    Article
  5. 225
  6. 226

    A Hybrid Artificial Intelligence Approach for Down Syndrome Risk Prediction in First Trimester Screening by Emre Yalçın, Serpil Aslan, Mesut Toğaçar, Süleyman Cansun Demir

    Published 2025-06-01
    “…<b>Background/Objectives:</b> The aim of this study is to develop a hybrid artificial intelligence (AI) approach to improve the accuracy, efficiency, and reliability of Down Syndrome (DS) risk prediction during first trimester prenatal screening. The proposed method transforms one-dimensional (1D) patient data—including features such as nuchal translucency (NT), human chorionic gonadotropin (hCG), and pregnancy-associated plasma protein A (PAPP-A)—into two-dimensional (2D) Aztec barcode images, enabling advanced feature extraction using transformer-based deep learning models. …”
    Get full text
    Article
  7. 227
  8. 228

    High throughput computational screening and interpretable machine learning for iodine capture of metal-organic frameworks by Haoyi Tan, Yukun Teng, Guangcun Shan

    Published 2025-05-01
    “…In addition to 6 structural features, 25 molecular features (encompassing the types of metal and ligand atoms as well as bonding modes) and 8 chemical features (including heat of adsorption and Henry’s coefficient) were incorporated to enhance the prediction accuracy of the machine learning algorithms. …”
    Get full text
    Article
  9. 229
  10. 230

    Student knowledge tracking based multi-indicator exercise recommendation algorithm by Bin ZHUGE, Zhenghu YIN, Wenxue SI, Lei YAN, Ligang DONG, Xian JIANG

    Published 2022-09-01
    “…Personalized exercise recommendation was an important topic in the era of education informatization, the forgetting laws of students in the learning process were ignored by the traditional problem recommendation algorithm, which failed to fully tap the students’ knowledge mastery level and the common characteristics of similar students, insufficient, could not reasonably promote students’ learning of new knowledge or help students find and fill omissions.In view of the above defects, a multi-index exercise recommendation method based on student knowledge tracking was proposed, which was divided into two modules: preliminary screening and re-filtering of exercises, focusing on the novelty, difficulty and diversity of exercise recommendation.Firstly, a knowledge probability prediction (SF-KCCP) model combined with students’ forgetting law was constructed to ensure the novelty of the recommended exercises.Then, students’ knowledge and concept mastery level was accurately excavated based on the dynamic key-value knowledge tracking (DKVMN) model to ensure that exercises of appropriate difficulty were recommended.Finally, the user-based collaborative filtering (UserCF) algorithm was integrated into the re-filtering module, and the similarity between student groups was used to achieve the diversity of recommendation results.The proposed method is demonstrated by extensive experiments to achieve better performance than some existing baseline models.…”
    Get full text
    Article
  11. 231

    Student knowledge tracking based multi-indicator exercise recommendation algorithm by Bin ZHUGE, Zhenghu YIN, Wenxue SI, Lei YAN, Ligang DONG, Xian JIANG

    Published 2022-09-01
    “…Personalized exercise recommendation was an important topic in the era of education informatization, the forgetting laws of students in the learning process were ignored by the traditional problem recommendation algorithm, which failed to fully tap the students’ knowledge mastery level and the common characteristics of similar students, insufficient, could not reasonably promote students’ learning of new knowledge or help students find and fill omissions.In view of the above defects, a multi-index exercise recommendation method based on student knowledge tracking was proposed, which was divided into two modules: preliminary screening and re-filtering of exercises, focusing on the novelty, difficulty and diversity of exercise recommendation.Firstly, a knowledge probability prediction (SF-KCCP) model combined with students’ forgetting law was constructed to ensure the novelty of the recommended exercises.Then, students’ knowledge and concept mastery level was accurately excavated based on the dynamic key-value knowledge tracking (DKVMN) model to ensure that exercises of appropriate difficulty were recommended.Finally, the user-based collaborative filtering (UserCF) algorithm was integrated into the re-filtering module, and the similarity between student groups was used to achieve the diversity of recommendation results.The proposed method is demonstrated by extensive experiments to achieve better performance than some existing baseline models.…”
    Get full text
    Article
  12. 232

    Panel defect detection algorithm based on improved Faster R-CNN by Chen Wanqin, Tang Qingshan, Huang Tao

    Published 2022-01-01
    “…Experimental results show that the accuracy and recognition rate of the optimized network model have been greatly improved.…”
    Get full text
    Article
  13. 233
  14. 234

    Two-test algorithms for infectious disease diagnosis: Implications for COVID-19. by Sunil Pokharel, Lisa J White, Jilian A Sacks, Camille Escadafal, Amy Toporowski, Sahra Isse Mohammed, Solomon Chane Abera, Kekeletso Kao, Marcela De Melo Freitas, Sabine Dittrich

    Published 2022-01-01
    “…A two-test algorithm comprising a rapid screening test followed by confirmatory laboratory testing can reduce false positive rate, produce rapid results and conserve laboratory resources, but can lead to large number of missed cases in high prevalence setting. …”
    Get full text
    Article
  15. 235
  16. 236

    Predicting algorithm of attC site based on combination optimization strategy by Zhendong Liu, Xi Chen, Dongyan Li, Xinrong Lv, Mengying Qin, Ke Bai, Zhiqiang He, Yurong Yang, Xiaofeng Li, Qionghai Dai

    Published 2022-12-01
    “…Based on the structural features of attC sites, the prediction algorithm realises the high-precision prediction of the recombination frequencies between sites and the screening of the top 20 important features that play a role in recombination, which are effective for improving the design method of attC sites. …”
    Get full text
    Article
  17. 237
  18. 238

    Analysis of imaging differences between high-resolution CT and digital radiography chest films in pneumoconiosis screening by Lijuan LIU, Fenghong WANG

    Published 2025-03-01
    “…HRCT enables systematic observation of the evolution and progression of pneumoconiosis, providing reliable evidence for diagnosis.ObjectiveTo provide reliable evidences for the early screening of pneumoconiosis, By analyzing the imaging difference between HRCT and DR chestfilms in pneumoconiosis screening.MethodsSix casting workers in a casting forging company suspected of early stage of pneumoconiosis through regular occupational health examination screening were recruited , and 64 rows of spiral CT thin layer were scanned and reconstructed by high-resolution bone algorithm. …”
    Get full text
    Article
  19. 239

    Socially Responsible Investment Portfolio Construction with a Double-Screening Mechanism considering Machine Learning Prediction by Jun Zhang, Xuedong Chen

    Published 2021-01-01
    “…The proposed models consist of two stages, i.e., stock screening and asset allocation. …”
    Get full text
    Article
  20. 240

    High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics by Yuhui Li, Guolin Wan, Yongqian Zhu, Jingyu Yang, Yan-Fang Zhang, Jinbo Pan, Shixuan Du

    Published 2024-11-01
    “…Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. …”
    Get full text
    Article