Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 1,001 - 1,020 results of 1,273 for search '(((mode OR (model OR model)) OR model) OR made) screening algorithm', query time: 0.21s Refine Results
  1. 1001

    The impact of a coach-guided personalized depression risk communication program on the risk of major depressive episode: study protocol for a randomized controlled trial by JianLi Wang, Cindy Feng, Mohammad Hajizadeh, Alain Lesage

    Published 2024-12-01
    “…Built upon the research on risk prediction modeling and risk communication, we developed a coach-guided, personalized depression risk communication tool (PDRC) for sharing information about individualized depression risk and evidence-based self-help strategies. …”
    Get full text
    Article
  2. 1002
  3. 1003

    Unveiling diagnostic biomarkers and therapeutic targets in lung adenocarcinoma using bioinformatics and experimental validation by Sixuan Wu, Yuanbin Tang, Qihong Pan, Yaqin Zheng, Yeru Tan, Junfan Pan, Yuehua Li

    Published 2025-07-01
    “…In addition, a machine learning model constructed based on Stepglm[backward] with the random forest algorithm achieved the highest C-index (0.999) and screened eight core genes, among which ST14 was noted for its excellent predictive ability. …”
    Get full text
    Article
  4. 1004

    Smart driving assistance system for mining operations in foggy environments by Swades Kumar Chaulya, Monika Choudhary, Naresh Kumar, Vikash Kumar, Abhishek Chowdhury

    Published 2025-03-01
    “…Finally, the screen fitted in the dashboard is forward-facing to the operator's seat and displays the final output. …”
    Get full text
    Article
  5. 1005

    Identification and validation of ubiquitination-related genes for predicting cervical cancer outcome by Ge Jin, Xiaomei Fan, Xiaoliang Liang, Honghong Dai, Jun Wang

    Published 2025-07-01
    “…The risk score model constructed based on these biomarkers could effectively predict the survival rate of cervical cancer patients (AUC >0.6 for 1/3/5 years). …”
    Get full text
    Article
  6. 1006

    Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker by Ni M, Peng W, Wang X, Li J

    Published 2025-02-01
    “…A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. …”
    Get full text
    Article
  7. 1007

    LABORATORY OF CLINICAL IMMUNOLOGY N.V. SKLIFOSOVSKY RESEARCH INSTITUTE FOR EMERGENCY MEDICINE (HISTORY AND PRESENT) by M. A. Godkov, G. V. Bulava

    Published 2016-03-01
    “…During 45 years of work of immunological service formed the algorithm of the adequate immunological screening was formed, number of innovative methods of diagnosis was developed, the ideology of post-test counseling of patients by immunologists was created, mathematical methods of storage, modeling and processing of research results was introduced. …”
    Get full text
    Article
  8. 1008

    Identification and validation of key biomarkers associated with immune and oxidative stress for preeclampsia by WGCNA and machine learning by Tiantian Yu, Tiantian Yu, Tiantian Yu, Guiying Wang, Guiying Wang, Guiying Wang, Xia Xu, Xia Xu, Xia Xu, Jianying Yan, Jianying Yan, Jianying Yan

    Published 2025-03-01
    “…In the final step, we validated the significant hub gene using independent external datasets, the hypoxia model of the HTR-8/SVneo cell line, and human placental tissue samples.ResultsAt last, leptin (LEP) was identified as a core gene through screening and was found to be upregulated. …”
    Get full text
    Article
  9. 1009

    Cell death-related signature genes: risk-predictive biomarkers and potential therapeutic targets in severe sepsis by Yanan Li, Yuqiu Tan, Zengwen Ma, Zengwen Ma, Weiwei Qian, Weiwei Qian

    Published 2025-05-01
    “…Further combining cell death-related gene screening and four machine learning algorithms (including LASSO-logistic, Gradient Boosting Machine, Random Forest and xGBoost), nine SeALAR-characterized cell death genes (SeDGs) were screened and a risk prediction model based on SeDGs was constructed that demonstrated good prediction performance. …”
    Get full text
    Article
  10. 1010

    Opening closed doors: using machine learning to explore factors associated with marital sexual violence in a cross-sectional study from India by Anita Raj, Abhishek Singh, Nandita Bhan, Lotus McDougal, Nabamallika Dehingia, Julian McAuley

    Published 2021-12-01
    “…Analyses included iterative thematic analysis (L-1 regularised regression followed by iterative qualitative thematic coding of L-2 regularised regression results) and neural network modelling.Outcome measure Participants reported their experiences of sexual violence perpetrated by their current (or most recent) husband in the previous 12 months. …”
    Get full text
    Article
  11. 1011

    Improving the accuracy of remotely sensed TSS and turbidity using quality enhanced water reflectance by a statistical resampling technique by Kunwar Abhishek Singh, Dongryeol Ryu, Meenakshi Arora, Manoj Kumar Tiwari, Bhabagrahi Sahoo

    Published 2025-08-01
    “…The statistical resampling approach based on GMM was applied to Sentinel-2 (S2) imagery to produce input to Machine Learning (ML) algorithms to retrieve the TSS and turbidity for target river sections. …”
    Get full text
    Article
  12. 1012

    Characterization and stratification of risk factors of stroke in people living with HIV: A theory-informed systematic review by Martins Nweke, Nombeko Mshunqane

    Published 2025-05-01
    “…Predictive and preventative models should target factors with a high causality index and low investigative costs. …”
    Get full text
    Article
  13. 1013

    Exploring pesticide risk in autism via integrative machine learning and network toxicology by Ling Qi, Jingran Yang, Qiao Niu, Jianan Li

    Published 2025-06-01
    “…Each combination of 1–23 targets was used to construct predictive models using eight different machine learning algorithms. …”
    Get full text
    Article
  14. 1014

    Machine learning-derived prognostic signature integrating programmed cell death and mitochondrial function in renal clear cell carcinoma: identification of PIF1 as a novel target by Guangyang Cheng, Zhaokai Zhou, Shiqi Li, Fu Peng, Shuai Yang, Chuanchuan Ren

    Published 2025-02-01
    “…Finally, a novel RCC prognostic marker PIF1 was identified in model genes. The knockdown of PIF1 in vitro inhibited the progression of renal carcinoma cells. …”
    Get full text
    Article
  15. 1015

    Development and validation of a nomogram for predicting in-hospital mortality in older adult hip fracture patients with atrial fibrillation: a retrospective study by Zhenli Li, Jing He, Tiezhu Yao, Guang Liu, Jing Liu, Ling Guo, Mengjia Li, Mengjia Li, Zhengkun Guan, Zhengkun Guan, Ruolian Gao, Jingtao Ma

    Published 2025-07-01
    “…Logistic regression (LR) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms were employed to screen features. We further used Extreme Gradient Boosting (XGBoost) based on features selected by LR and LASSO algorithms to assist in identifying the final model-established features. …”
    Get full text
    Article
  16. 1016

    Machine learning and multi-omics analysis reveal key regulators of proneural–mesenchymal transition in glioblastoma by Can Xu, Jin Yang, Huan Xiong, Xiaoteng Cui, Yuhao Zhang, Mingjun Gao, Lei He, Qiuyue Fang, Changxi Han, Wei Liu, Yangyang Wang, Jin Zhang, Ying Yuan, Zhaomu Zeng, Ruxiang Xu

    Published 2025-06-01
    “…The Lasso, Cox, and Step machine learning algorithms were used to construct and screen the optimal risk assessment prognostic model. …”
    Get full text
    Article
  17. 1017
  18. 1018

    Signatures of Six Autophagy‐Related Genes as Diagnostic Markers of Thyroid‐Associated Ophthalmopathy and Their Correlation With Immune Infiltration by Qintao Ma, Yuanping Hai, Jie Shen

    Published 2024-12-01
    “…The combined six‐gene model also showed good diagnostic efficacy (AUC = 0.948). …”
    Get full text
    Article
  19. 1019

    Identifying and Validating an Acidosis-Related Signature Associated with Prognosis and Tumor Immune Infiltration Characteristics in Pancreatic Carcinoma by Pingfei Tang, Weiming Qu, Dajun Wu, Shihua Chen, Minji Liu, Weishun Chen, Qiongjia Ai, Haijuan Tang, Hongbing Zhou

    Published 2021-01-01
    “…Univariate Cox regression and the Kaplan–Meier method were applied to screen for prognostic genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish the optimal model. …”
    Get full text
    Article
  20. 1020

    Novel insights into the molecular mechanisms of sepsis-associated acute kidney injury: an integrative study of GBP2, PSMB8, PSMB9 genes and immune microenvironment characteristics by Haiting Ye, Xiang Zhang, Pengyan Li, Mei Wang, Ruolan Liu, Dingping Yang

    Published 2025-03-01
    “…Immune cell infiltration was analyzed using the CIBERSORT algorithm, and potential associations between the hub genes and clinicopathological features were explored based on the Nephroseq database. …”
    Get full text
    Article