Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 221 - 240 results of 1,273 for search '(((mode OR (model OR model)) OR model) OR made) screening algorithm', query time: 0.22s Refine Results
  1. 221

    Machine learning-based risk prediction model for pertussis in children: a multicenter retrospective study by Juan Xie, Run-wei Ma, Yu-jing Feng, Yuan Qiao, Hong-yan Zhu, Xing-ping Tao, Wen-juan Chen, Cong-yun Liu, Tan Li, Kai Liu, Li-ming Cheng

    Published 2025-03-01
    “…The model was constructed using machine learning techniques based on multicenter data and screened for key features. …”
    Get full text
    Article
  2. 222

    Machine learning-based coronary heart disease diagnosis model for type 2 diabetes patients by Yingxi Chen, Chunyu Wang, Chunyu Wang, Xiaozhu Liu, Minjie Duan, Tianyu Xiang, Haodong Huang, Haodong Huang

    Published 2025-05-01
    “…Five machine learning algorithms, including Logistic regression, Support Vector Machine (SVM), Random Forest (RF), eXtreme gradient boosting (XgBoost), and Light Gradient Boosting Machine (LightGBM), were selected for modeling. …”
    Get full text
    Article
  3. 223

    A Predictive Model for Secondary Posttonsillectomy Hemorrhage in Pediatric Patients: An 8‐Year Retrospective Study by Yuting Ge, Wenchuan Chang, Lixiao Xie, Yan Gao, Yue Xu, Huie Zhu

    Published 2025-02-01
    “…Univariate logistic regression analysis was used to screen features. Multivariate logistic regression and seven machine learning algorithms were used to construct predictive models. …”
    Get full text
    Article
  4. 224

    Practical applications of methods to incorporate patient preferences into medical decision models: a scoping review by Jakub Fusiak, Kousha Sarpari, Inger Ma, Ulrich Mansmann, Verena S. Hoffmann

    Published 2025-03-01
    “…Abstract Background Algorithms and models increasingly support clinical and shared decision-making. …”
    Get full text
    Article
  5. 225

    Accurate prediction of mediolateral episiotomy risk during labor: development and verification of an artificial intelligence model by Tingting Hu, Liheng Zhao, Xueling Zhao, Lin He, Xiaoli Zhong, Zhe Yin, Junjie Chen, Yanting Han, Ka Li

    Published 2025-03-01
    “…Results Twenty eight factors influencing mediolateral episiotomy were screened. The model evaluation results showed that the SVM model has the best prediction ability among the six models, with an accuracy of 0.793, a recall rate of 0.981, a precision rate of 0.790, and a F1 value of 0.875. …”
    Get full text
    Article
  6. 226

    Novel exosome-associated LncRNA model predicts colorectal cancer prognosis and drug response by Chi Zhou, Qian Qiu, Xinyu Liu, Tiantian Zhang, Leilei Liang, Yihang Yuan, Yufo Chen, Weijie Sun

    Published 2025-05-01
    “…Next, we further provide colony formation assay, Transwell assay and xenograft models to understand the carcinogenic effect of MIR4713HG. …”
    Get full text
    Article
  7. 227

    XGBoost Algorithm for Cervical Cancer Risk Prediction: Multi-dimensional Feature Analysis by Sudi Suryadi, Masrizal

    Published 2025-06-01
    “…This study is situated at the intersection of clinical oncology and computational intelligence, exploring the potential of gradient-boosting algorithms to overcome the limitations of conventional screening methodologies. …”
    Get full text
    Article
  8. 228

    Development of an ensemble prediction model for acute graft-versus-host disease in allogeneic transplantation based on machine learning by Lin Song, Xingwei Wu, Mengjia Xu, Ling Xue, Xun Yu, Zongqi Cheng, Chenrong Huang, Liyan Miao

    Published 2025-07-01
    “…Then fifteen algorithms were used to establish models, and an ensemble model was established through soft voting based on the top five performance algorithms. …”
    Get full text
    Article
  9. 229

    Algorithm for alerting the unmanned aerial vehicle operator based on the image potential obstacle borders detection on the flight trajectory using the OPEN CV library by V. Yu. Stepanov, E. A. Hvitko

    Published 2019-02-01
    “…Then the conclusion is made about necessity of development of algorithm and software, which can help the operator of the UAV in deciding on necessary trajectory changes of UAV, since, for example, guided solely by the method image of the terrain or another similar method in the planning of the UAV trajectory as preliminary preparation for the flight, however, such methods are fairly static and are not suitable in such situations as, for example, detection of unexpected obstacles. …”
    Get full text
    Article
  10. 230
  11. 231

    A Seasonal Fresh Tea Yield Estimation Method with Machine Learning Algorithms at Field Scale Integrating UAV RGB and Sentinel-2 Imagery by Huimei Liu, Yun Liu, Weiheng Xu, Mei Wu, Leiguang Wang, Ning Lu, Guanglong Ou

    Published 2025-01-01
    “…Subsequently, these 26 features were screened using the random forest algorithm and Pearson correlation analysis. …”
    Get full text
    Article
  12. 232

    Cost-effectiveness analysis of MASLD screening using FIB-4 based two-step algorithm in the medical check-up by Mimi Kim, Huiyul Park, Eileen L. Yoon, Ramsey Cheung, Donghee Kim, Hye-Lin Kim, Dae Won Jun

    Published 2025-06-01
    “…We constructed a hybrid model of the decision tree model and Markov model to compare expected costs and quality-adjusted life-years (QALYs) between ‘screening’ and ‘no screening’ groups from healthcare system perspectives. …”
    Get full text
    Article
  13. 233

    Fuzzy Decision-Making Analysis of Quantitative Stock Selection in VR Industry Based on Random Forest Model by Jia-Ming Zhu, Yu-Gan Geng, Wen-Bo Li, Xia Li, Qi-Zhi He

    Published 2022-01-01
    “…Different from the analysis of quantitative stock selection by constructing a logistics multifactor stock selection model in the existing research, the research mainly adopts the random forest algorithm based on fuzzy mathematics to construct the initial investment strategy portfolio. …”
    Get full text
    Article
  14. 234

    Development and validation of an explainable machine learning model for predicting osteoporosis in patients with type 2 diabetes mellitus by Qipeng Wei, Zihao Liu, Xiaofeng Chen, Hao Li, Weijun Guo, Qingyan Huang, Jinxiang Zhan, Shiji Chen, Dongling Cai, Dongling Cai

    Published 2025-08-01
    “…Potential predictive features were identified using univariate analysis, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm. Eight supervised ML algorithms were applied to construct predictive models. …”
    Get full text
    Article
  15. 235

    Research Trends on Metabolic Syndrome in Digital Health Care Using Topic Modeling: Systematic Search of Abstracts by Kiseong Lee, Yoongi Chung, Ji-Su Kim

    Published 2024-12-01
    “…The methodological approach included text preprocessing, text network analysis, and topic modeling using the BERTopic algorithm. …”
    Get full text
    Article
  16. 236

    AI driven cardiovascular risk prediction using NLP and Large Language Models for personalized medicine in athletes by Ang Li, Yunxin Wang, Hongxu Chen

    Published 2025-06-01
    “…This study explores the innovative applications of Natural Language Processing (NLP) and Large Language Models (LLMs) in biomedical diagnostics, particularly for AI-driven arrhythmia detection, hypertrophic cardiomyopathy (HCM) in athletes, and personalized medicine. …”
    Get full text
    Article
  17. 237

    Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao, Tongyu Xu

    Published 2025-08-01
    “…The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. …”
    Get full text
    Article
  18. 238

    Design and refinement of a clinical trial staffing model within the evolving landscape of oncology clinical trials by Ellen Siglinsky, Hannah Phan, Silviya Meletath, Amber Neal, David E. Gerber, Asal Rahimi, Erin L. Williams

    Published 2025-06-01
    “…We developed and evaluated a staffing model designed to meet this need. Methods: To address individual protocol acuity, the model's algorithms include metrics to account for visit frequency, and the quantity, and types of research-related procedures. …”
    Get full text
    Article
  19. 239

    Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review by Jie Li, Manli Zhu, Li Yan

    Published 2024-12-01
    “…Background With the development of artificial intelligence, the application of machine learning to develop predictive models for sepsis-associated acute kidney injury has made potential breakthroughs in early identification, grading, diagnosis, and prognosis determination.Methods Here, we conducted a systematic search of the PubMed, Cochrane Library, Embase (Ovid), Web of Science, and Scopus databases on April 28, 2023, and screened relevant literature. …”
    Get full text
    Article
  20. 240

    Machine learning based predictive modeling and risk factors for prolonged SARS-CoV-2 shedding by Yani Zhang, Qiankun Li, Haijun Duan, Liang Tan, Ying Cao, Junxin Chen

    Published 2024-11-01
    “…This study involved a large cohort of 56,878 hospitalized patients, and we leveraged the XGBoost algorithm to establish a predictive model based on these features. …”
    Get full text
    Article