Search alternatives:
mode » made (Expand Search)
model » madel (Expand Search)
Showing 381 - 400 results of 1,414 for search '(((mode OR ((model OR model) OR model)) OR model) OR more) screening algorithm', query time: 0.20s Refine Results
  1. 381
  2. 382

    Categorizing Mental Stress: A Consistency-Focused Benchmarking of ML and DL Models for Multi-Label, Multi-Class Classification via Taxonomy-Driven NLP Techniques by Juswin Sajan John, Boppuru Rudra Prathap, Gyanesh Gupta, Jaivanth Melanaturu

    Published 2025-06-01
    “…Building on existing literature, discussions with psychologists and other mental health practitioners, we developed a taxonomy of 27 distinctive markers spread across 4 label categories; aiming to create a preliminary screening tool leveraging textual data.The core objective is to identify the most suitable model for this complex task, encompassing comprehensive evaluation of various machine learning and deep learning algorithms. we experimented with support vector machines (SVM), random forest (RF) and long short-term memory (LSTM) algorithms incorporating various feature combinations involving Term Frequency-Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA). …”
    Get full text
    Article
  3. 383

    Adaptive strategies for the deployment of rapid diagnostic tests for COVID-19: a modelling study [version 2; peer review: 2 approved, 1 approved with reservations] by Emily Kendall, Lucia Cilloni, Nimalan Arinaminpathy, David Dowdy

    Published 2025-05-01
    “…Concentrating on urban areas in low- and middle-income countries, the aim of this analysis was to estimate the degree to which ‘dynamic’ screening algorithms, that adjust the use of confirmatory polymerase chain reaction (PCR) testing based on epidemiological conditions, could reduce cost without substantially reducing the impact of testing. …”
    Get full text
    Article
  4. 384

    Corrosion Rate Prediction of Buried Oil and Gas Pipelines: A New Deep Learning Method Based on RF and IBWO-Optimized BiLSTM–GRU Combined Model by Jiong Wang, Zhi Kong, Jinrong Shan, Chuanjia Du, Chengjun Wang

    Published 2024-11-01
    “…The combined model, which incorporates an intelligent algorithm, is an effective means of enhancing the precision of buried pipeline corrosion rate prediction. …”
    Get full text
    Article
  5. 385

    Using Life’s Essential 8 and heavy metal exposure to determine infertility risk in American women: a machine learning prediction model based on the SHAP method by Xiaoqing Gu, Qianbing Li, Xiangfei Wang

    Published 2025-07-01
    “…The association between LE8 and heavy metal exposure and risk of infertility was assessed using logistic regression analysis and six machine learning models (Decision Tree, GBDT, AdaBoost, LGBM, Logistic Regression, Random Forest), and the SHAP algorithm was used to explain the model’s decision process.ResultsOf the six machine learning models, the LGBM model has the best predictive performance, with an AUROC of 0.964 on the test set. …”
    Get full text
    Article
  6. 386

    Assessing the predictive value of time-in-range level for the risk of postoperative infection in patients with type 2 diabetes: a cohort study by Ying Wu, Rui Xv, Qinyun Chen, Ranran Zhang, Min Li, Chen Shao, Guoxi Jin, Guoxi Jin, Xiaolei Hu, Xiaolei Hu

    Published 2025-04-01
    “…LASSO regression and the Boruta algorithm were used to screen out the predictive factors related to postoperative infection in T2DM patients in the training set. …”
    Get full text
    Article
  7. 387

    Hybrid convolutional neural network optimized with an artificial algae algorithm for glaucoma screening using fundus images by M. Shanmuga Eswari, S. Balamurali, Lakshmana Kumar Ramasamy

    Published 2024-09-01
    “…Objective We developed an optimized decision support system for retinal fundus image-based glaucoma screening. Methods We combined computer vision algorithms with a convolutional network for fundus images and applied a faster region-based convolutional neural network (FRCNN) and artificial algae algorithm with support vector machine (AAASVM) classifiers. …”
    Get full text
    Article
  8. 388

    Construction of a machine learning-based risk prediction model for depression in middle-aged and elderly patients with cardiovascular metabolic diseases in China: a longitudinal st... by Gege Zhang, Sijie Dong, Li Wang

    Published 2025-05-01
    “…LASSO regression was used to screen for risk factors, and three machine learning algorithms—logistic regression (LR), random forest (RF), and XGBoost—were employed to build predictive models. …”
    Get full text
    Article
  9. 389

    Development of a postoperative recurrence prediction model for stage Ⅰ non-small cell lung cancer patients using multimodal data based on machine learning by ZHANG Di, WU Yi, XU Yu

    Published 2025-07-01
    “…A combined model was further constructed by integrating both feature sets, and model performance was compared to identify the optimal predictive model.Results‍ ‍This study screened the features from non-contrast CT images and ultimately selected 7 radiomic features for constructing radiomic model. …”
    Get full text
    Article
  10. 390

    An open dataset and machine learning algorithms for Niacin Skin-Flushing Response based screening of psychiatric disorders by Xuening Lyu, Rimsa Goperma, Dandan Wang, Chunling Wan, Liang Zhao

    Published 2025-08-01
    “…The core of our methodology involves a novel algorithm featuring an Efficient-Unet based Deep Learning model for the precise segmentation of NSR areas. …”
    Get full text
    Article
  11. 391

    Identification and validation of prognostic genes associated with T-cell exhaustion and macrophage polarization in breast cancer by Fengqiang Cui, Changjiao Yan, Jiang Wu, Yuqing Yang, Jixin Yang, Jialing Luo, Nanlin Li

    Published 2025-05-01
    “…Next, 101 combinations of 10 machine learning algorithms and univariate Cox analysis were utilized to screen for prognostic genes. …”
    Get full text
    Article
  12. 392

    A Literature Analysis-Based Study on Advances in Underwater Multi-Robot Pursuit-Evasion Problems by Zhenkun LEI, Mingzhi CHEN, Daqi ZHU

    Published 2025-06-01
    “…This paper summarizes the application potential and existing issues of current methods in underwater environments and proposes future research directions, including the development of more efficient and adaptive intelligent pursuit-evasion algorithms, so as to address the technical requirements of complex underwater environments and provide theoretical references for designing pursuit-evasion strategies for underwater multi-robot systems.…”
    Get full text
    Article
  13. 393

    Construction of a Prediction Model for Sleep Quality in Embryo Repeated Implantation Failure Patients Undergoing Assisted Reproductive Technology Based on Machine Learning: A Singl... by Zhao Y, Xu C, Qin N, Bai L, Wang X, Wang K

    Published 2025-07-01
    “…Use Lasso regression to screen variables and construct a risk prediction model using six machine learning algorithms. …”
    Get full text
    Article
  14. 394

    Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding by Shuanghui Zhao, Yanqun Zhang, Pancen Feng, Xinlong Hu, Yan Mo, Hao Li, Jiusheng Li

    Published 2025-06-01
    “…In this study, leaf dehydration experiments of three maize cultivars were applied to provide a dataset covering a wide range of <i>Ψ<sub>leaf</sub></i> variations, which is often challenging to obtain in field trials. The analysis screened published VIs highly correlated with <i>Ψ<sub>leaf</sub></i> and constructed a model for <i>Ψ<sub>leaf</sub></i> estimation based on three algorithms—partial least squares regression (PLSR), random forest (RF), and multiple linear stepwise regression (MLR)—for each cultivar and all three cultivars. …”
    Get full text
    Article
  15. 395

    A proposed algorithm for early autism screening in Polish primary care settings – a pilot study by Patryk Domarecki, Katarzyna Plata-Nazar, Wojciech Nazar

    Published 2025-07-01
    “…Abstract Background The rising rate of autism spectrum disorder (ASD) prevalence worldwide demands new screening algorithms to make the process of diagnosis more effective. …”
    Get full text
    Article
  16. 396

    Prospective external validation of the automated PIPRA multivariable prediction model for postoperative delirium on real-world data from a consecutive cohort of non-cardiac surgery... by Mary-Anne Kedda, Kelly A Reeve, Nayeli Schmutz Gelsomino, Michela Venturini, Felix Buddeberg, Martin Zozman, Reto Stocker, Philipp Meier, Marius Möller, Simone Pascale Wildhaber, Benjamin T Dodsworth

    Published 2025-04-01
    “…The study highlighted the model’s applicability across diverse clinical environments, despite differences in patient populations and screening protocols.Conclusions The PIPRA algorithm is a reliable tool for identifying surgical patients at risk of POD, supporting early intervention strategies to improve patient outcomes. …”
    Get full text
    Article
  17. 397

    Deep Learning-Based Detection of Aflatoxin B1 Contamination in Almonds Using Hyperspectral Imaging: A Focus on Optimized 3D Inception–ResNet Model by Md. Ahasan Kabir, Ivan Lee, Sang-Heon Lee

    Published 2025-03-01
    “…A feature selection algorithm was employed to enhance processing efficiency and reduce spectral dimensionality while maintaining high classification accuracy. …”
    Get full text
    Article
  18. 398

    Multi-model machine learning framework for lung cancer risk prediction: A comparative analysis of nine classifiers with hybrid and ensemble approaches using behavioral and hematolo... by Vinod Kumar, Chander prabha, Deepali Gupta, Sapna Juneja, Swati Kumari, Ali Nauman

    Published 2025-08-01
    “…The present study investigates 34 demographic, behavioral, and hematological risk factors based on a sample of 2,000 patient data records. A multi-model machine learning approach compares nine algorithms: KNN, AdaBoost (AB), logistic regression (LR), random forest (RF), SVM, naive Bayes (NB), decision tree (DT), gradient boosting (GB), and stochastic gradient descent (SGD). …”
    Get full text
    Article
  19. 399

    Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. by Cox Lwaka Tamba, Yuan-Li Ni, Yuan-Ming Zhang

    Published 2017-01-01
    “…This method is referred to as ISIS EM-BLASSO algorithm. Monte Carlo simulation studies validated the new method, which has the highest empirical power in QTN detection and the highest accuracy in QTN effect estimation, and it is the fastest, as compared with efficient mixed-model association (EMMA), smoothly clipped absolute deviation (SCAD), fixed and random model circulating probability unification (FarmCPU), and multi-locus random-SNP-effect mixed linear model (mrMLM). …”
    Get full text
    Article
  20. 400

    A novel lightweight multi-scale feature fusion segmentation algorithm for real-time cervical lesion screening by Jiahui Yang, Ying Zhang, Wenlong Fan, Jie Wang, Xinhe Zhang, Chunhui Liu, Shuang Liu, Linyan Xue

    Published 2025-02-01
    “…Therefore, a lightweight algorithm segmentation for cervical lesion real-time screening system is urgently needed. …”
    Get full text
    Article