Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 1,101 - 1,120 results of 1,273 for search '(((mode OR ((model OR model) OR model)) OR model) OR made) screening algorithm', query time: 0.20s Refine Results
  1. 1101

    Identification of novel gut microbiota-related biomarkers in cerebral hemorrhagic stroke by Fengli Ye, Huili Li, Hongying Li, Xiue Mu

    Published 2025-08-01
    “…Functional enrichment, gene set enrichment analysis (GSEA), and protein–protein interaction (PPI) analyses were performed. Hub genes were screened using LASSO, RandomForest, and SVM-RFE algorithms. …”
    Get full text
    Article
  2. 1102

    Identification of markers correlating with mitochondrial function in myocardial infarction by bioinformatics. by Wenlong Kuang, Jianwu Huang, Yulu Yang, Yuhua Liao, Zihua Zhou, Qian Liu, Hailang Wu

    Published 2024-01-01
    “…The 10 MI-related hub MitoDEGs were then obtained by eight different algorithms. Immunoassays showed a significant increase in monocyte macrophage and T cell infiltration. …”
    Get full text
    Article
  3. 1103

    TikTok and Sound: Changing the ways of Creating, Promoting, Distributing and Listening to Music by Bojana Radovanović

    Published 2022-12-01
    “…In this article I will explore the ways in which TikTok has made an “aural turn” (Abidin and Kaye 2021), and thus changed and influenced the processes of music-making, music listening and music promotion. …”
    Get full text
    Article
  4. 1104

    Machine learning for clustering and classification of early knee osteoarthritis using single-leg standing kinematics by Ui-Jae Hwang, Kyu Sung Chung, Sung-Min Ha

    Published 2025-03-01
    “…This study investigated the application of machine learning techniques to single-leg standing (SLS) kinematics to classify and predict EOA. (1) To identify distinct groups based on SLS kinematic patterns using unsupervised learning algorithms, (2) to develop supervised learning models to predict EOA status, and (3) to identify the most influential kinematic variables associated with EOA. …”
    Get full text
    Article
  5. 1105

    In the Refractory Hypertension “Labyrinth”. Focus on Primary Hyperaldosteronism by O. V. Tsygankova, T. I. Batluk, L. D. Latyntseva, E. V. Akhmerova, N. M. Akhmedzhanov

    Published 2020-09-01
    “…It should not only have made the diagnosis easy, but it could have also absolutely justified the surgical tactics. …”
    Get full text
    Article
  6. 1106

    AI-driven biomarker discovery: enhancing precision in cancer diagnosis and prognosis by Esther Ugo Alum

    Published 2025-03-01
    “…Existing gaps include data quality, algorithmic transparency, and ethical concerns around privacy, among others. …”
    Get full text
    Article
  7. 1107

    Combining Near-Infrared Spectroscopy and Chemometrics for Rapid Recognition of an Hg-Contaminated Plant by Bang-Cheng Tang, Hai-Yan Fu, Qiao-Bo Yin, Zeng-Yan Zhou, Wei Shi, Lu Xu, Yuan-Bin She

    Published 2016-01-01
    “…The NIRS measurements of impacted sample powders were collected in the mode of reflectance. The DUPLEX algorithm was utilized to split the NIRS data into representative training and test sets. …”
    Get full text
    Article
  8. 1108

    Estimation of potato leaf area index based on spectral information and Haralick textures from UAV hyperspectral images by Jiejie Fan, Jiejie Fan, Yang Liu, Yang Liu, Yiguang Fan, Yihan Yao, Riqiang Chen, Mingbo Bian, Yanpeng Ma, Huifang Wang, Haikuan Feng, Haikuan Feng, Haikuan Feng

    Published 2024-11-01
    “…Three types of spectral data—original spectral reflectance (OSR), first-order differential spectral reflectance (FDSR), and vegetation indices (VIs)—along with three types of Haralick textures—simple, advanced, and higher-order—were analyzed for their correlation with LAI across multiple growth stages. A model for LAI estimation in potato at multiple growth stages based on spectral and textural features screened by the successive projection algorithm (SPA) was constructed using partial least squares regression (PLSR), random forest regression (RFR) and gaussian process regression (GPR) machine learning methods. …”
    Get full text
    Article
  9. 1109

    Geographic variation in secondary metabolites contents and their relationship with soil mineral elements in Pleuropterus multiflorum Thunb. from different regions by Yaling Yang, Siman Wang, Ruibin Bai, Feng Xiong, Yan Jin, Hanwei Liu, Ziyi Wang, Chengyuan Yang, Yi Yu, Apu Chowdhury, Chuanzhi Kang, Jian Yang, Lanping Guo

    Published 2024-09-01
    “…Conversely, a positive correlation was found between the contents of elements Na, Ce, Ti, and physcion and THSG-5, 2 components that exhibited higher levels in Deqing. Furthermore, an RF algorithm was employed to establish an interrelationship model, effectively forecasting the abundance of the majority of differential metabolites in HSW samples based on the content data of soil mineral elements. …”
    Get full text
    Article
  10. 1110

    The two ends of the spectrum: comparing chronic schizophrenia and premorbid latent schizotypy by actigraphy by Szandra László, Ádám Nagy, József Dombi, Emőke Adrienn Hompoth, Emese Rudics, Zoltán Szabó, András Dér, András Búzás, Zsolt János Viharos, Anh Tuan Hoang, Vilmos Bilicki, István Szendi

    Published 2025-05-01
    “…By applying model-explaining tools to the well-performing models, we could conclude the movement patterns and characteristics of the groups. …”
    Get full text
    Article
  11. 1111

    Deciphering the role of cuproptosis in the development of intimal hyperplasia in rat carotid arteries using single cell analysis and machine learning techniques by Miao He, Hui Chen, Zhengli Liu, Boxiang Zhao, Xu He, Qiujin Mao, Jianping Gu, Jie Kong

    Published 2025-02-01
    “…Methods: We downloaded single-cell sequencing and bulk transcriptome data from the GEO database to screen for copper-growth-associated genes (CAGs) using machine-learning algorithms, including Random Forest and Support Vector Machine. …”
    Get full text
    Article
  12. 1112

    Polygraph and audio synchronization applied to apnea event analysis based on non-negative matrix factorization by Francisco David Gonzalez-Martinez, Juan De La Torre-Cruz, Julio Jose Carabias-Orti, Francisco Jesus Canadas-Quesada, Alejandro Antonio Salvador-Navarro, Jose Ranilla, Lyam Lamrini-H. Laarbi

    Published 2025-06-01
    “…The proposed method introduces an iterative time-alignment algorithm based on the cross-correlation between an estimated respiratory sound signal and the nasal flow signal from PG. …”
    Get full text
    Article
  13. 1113

    Shared pathogenic mechanisms linking obesity and idiopathic pulmonary fibrosis revealed by bioinformatics and in vivo validation by Linjie Chen, Haojie Chen, Zinan Chen, Kunyi Zhang, Hongsen Zhang, Jiahe Xu, Tongsheng Chen

    Published 2025-07-01
    “…Functional enrichment (GO/KEGG), protein-protein interaction (PPI) networks, and machine learning algorithms were applied to screen hub genes, validated by ROC curves. …”
    Get full text
    Article
  14. 1114

    Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology by Matteo P. Ferla, Rubén Sánchez-García, Rachael E. Skyner, Stefan Gahbauer, Jenny C. Taylor, Frank von Delft, Brian D. Marsden, Charlotte M. Deane

    Published 2025-01-01
    “…This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode. Fragmenstein either takes the atomic coordinates of ligands from a experimental fragment screen and combines the atoms together to produce a novel merged virtual compound, or uses them to predict the bound complex for a provided molecule. …”
    Get full text
    Article
  15. 1115

    Prediction and validation of anoikis-related genes in neuropathic pain using machine learning. by Yufeng He, Ye Wei, Yongxin Wang, Chunyan Ling, Xiang Qi, Siyu Geng, Yingtong Meng, Hao Deng, Qisong Zhang, Xiaoling Qin, Guanghui Chen

    Published 2025-01-01
    “…We also used rats to construct an NP model and validated the analyzed hub genes using hematoxylin and eosin (H&E) staining, real-time polymerase chain reaction (PCR), and Western blotting assays.…”
    Get full text
    Article
  16. 1116

    Prognostic, oncogenic roles, and pharmacogenomic features of AMD1 in hepatocellular carcinoma by Youliang Zhou, Yi Zhou, Jiabin Hu, Yao Xiao, Yan Zhou, Liping Yu

    Published 2024-12-01
    “…Univariate Cox regression analysis and Pearson correlation were used to screen for AMD1-related genes (ARGs). Multidimensional bioinformatic algorithms were utilized to establish a risk score model for ARGs. …”
    Get full text
    Article
  17. 1117

    Identification of glucocorticoid-related genes in systemic lupus erythematosus using bioinformatics analysis and machine learning. by Yinghao Ren, Weiqiang Chen, Yuhao Lin, Zeyu Wang, Weiliang Wang

    Published 2025-01-01
    “…Furthermore, we utilized least absolute shrinkage and selection operator (LASSO) regression and Random Forest (RF) algorithms to screen for hub genes. We then validated the expression of these hub genes and constructed nomograms for further validation. …”
    Get full text
    Article
  18. 1118

    Identification of aging-related biomarkers and immune infiltration analysis in renal stones by integrated bioinformatics analysis by Yuanzhao Wang, Nana Chen, Bangqiu Zhang, Pingping Zhuang, Bingtao Tan, Changlong Cai, Niancai He, Hao Nie, Songtao Xiang, Chiwei Chen

    Published 2025-07-01
    “…Using logistic regression, SVM, and LASSO regression algorithms, a successful early-diagnosis model for RS was developed, yielding 7 key genes: CNR1, KIT, HTR2A, DES, IL33, UCP2, and PPT1. …”
    Get full text
    Article
  19. 1119

    Identification of potential metabolic biomarkers and immune cell infiltration for metabolic associated steatohepatitis by bioinformatics analysis and machine learning by Haoran Xie, Junjun Wang, Qiuyan Zhao

    Published 2025-05-01
    “…Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. …”
    Get full text
    Article
  20. 1120