Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 1,001 - 1,020 results of 1,273 for search '(((mode OR ((model OR model) OR model)) OR model) OR made) screening algorithm', query time: 0.19s Refine Results
  1. 1001

    Utilizing Multi-omics analysis to elucidate the role of mitochondrial gene defects in Gastric cancer progression. by Jie Chu, Hanying Song, Kemin Fu, Wei Xiao, Jiudong Jiang, Qixin Gan, Bo Deng

    Published 2025-01-01
    “…Additionally, both the ssGSEA algorithm and the CIBERSORT algorithm were utilized to evaluate changes and effects in immunological characteristics during gastric cancer pathogenesis.…”
    Get full text
    Article
  2. 1002

    WGCNA-ML-MR integration: uncovering immune-related genes in prostate cancer by Jing Lv, Jing Lv, Yuhua Zhou, Yuhua Zhou, Shengkai Jin, Shengkai Jin, Chaowei Fu, Chaowei Fu, Yang Shen, Yang Shen, Bo Liu, Bo Liu, Menglu Li, Yuwei Zhang, Yuwei Zhang, Ninghan Feng, Ninghan Feng, Ninghan Feng

    Published 2025-04-01
    “…Furthermore, a machine learning algorithm was used to screen for core genes and construct a diagnostic model, which was then validated in an external validation dataset. …”
    Get full text
    Article
  3. 1003
  4. 1004

    InvarNet: Molecular property prediction via rotation invariant graph neural networks by Danyan Chen, Gaoxiang Duan, Dengbao Miao, Xiaoying Zheng, Yongxin Zhu

    Published 2024-12-01
    “…Predicting molecular properties is crucial in drug synthesis and screening, but traditional molecular dynamics methods are time-consuming and costly. …”
    Get full text
    Article
  5. 1005

    Multi-Omics and Experimental Validation Identify GPX7 and Glutathione-Associated Oxidative Stress as Potential Biomarkers in Ischemic Stroke by Tianzhi Li, Sijie Zhang, Jinshan He, Hongyan Li, Jingsong Kang

    Published 2025-05-01
    “…Multidimensional feature screening using unsupervised consensus clustering and a series of machine learning algorithms led to the identification of the signature gene <i>GPX7</i>. …”
    Get full text
    Article
  6. 1006

    Fundus camera-based precision monitoring of blood vitamin A level for Wagyu cattle using deep learning by Nanding Li, Naoshi Kondo, Yuichi Ogawa, Keiichiro Shiraga, Mizuki Shibasaki, Daniele Pinna, Moriyuki Fukushima, Shinichi Nagaoka, Tateshi Fujiura, Xuehong De, Tetsuhito Suzuki

    Published 2025-02-01
    “…This study developed a handheld camera system capable of capturing cattle fundus images and predicting vitamin A levels in real time using deep learning. 4000 fundus images from 50 Japanese Black cattle were used to train and test the prediction algorithms, and the model achieved an average 87%, 83%, and 80% accuracy for three levels of vitamin A deficiency classification (particularly 87% for severe level), demonstrating the effectiveness of camera system in vitamin A deficiency prediction, especially for screening and early warning. …”
    Get full text
    Article
  7. 1007

    Unveiling the ageing-related genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning by Jian Huang, Lu Wang, Jiangfei Zhou, Tianming Dai, Weicong Zhu, Tianrui Wang, Hongde Wang, Yingze Zhang

    Published 2025-12-01
    “…The limma package was used to identify differentially expressed genes (DEGs), and weighted gene coexpression network analysis (WGCNA) screened gene modules, and machine learning algorithms, such as random forest (RF), support vector machine (SVM), generalised linear model (GLM), and extreme gradient boosting (XGB), were employed. …”
    Get full text
    Article
  8. 1008

    Prediction of Pt, Ir, Ru, and Rh complexes light absorption in the therapeutic window for phototherapy using machine learning by V. Vigna, T. F. G. G. Cova, A. A. C. C. Pais, E. Sicilia

    Published 2025-01-01
    “…The model is efficient, fast, and resource-light, using decision tree-based algorithms that provide interpretable results. …”
    Get full text
    Article
  9. 1009

    The impact of a coach-guided personalized depression risk communication program on the risk of major depressive episode: study protocol for a randomized controlled trial by JianLi Wang, Cindy Feng, Mohammad Hajizadeh, Alain Lesage

    Published 2024-12-01
    “…Built upon the research on risk prediction modeling and risk communication, we developed a coach-guided, personalized depression risk communication tool (PDRC) for sharing information about individualized depression risk and evidence-based self-help strategies. …”
    Get full text
    Article
  10. 1010

    Identification and validation of key biomarkers associated with immune and oxidative stress for preeclampsia by WGCNA and machine learning by Tiantian Yu, Tiantian Yu, Tiantian Yu, Guiying Wang, Guiying Wang, Guiying Wang, Xia Xu, Xia Xu, Xia Xu, Jianying Yan, Jianying Yan, Jianying Yan

    Published 2025-03-01
    “…In the final step, we validated the significant hub gene using independent external datasets, the hypoxia model of the HTR-8/SVneo cell line, and human placental tissue samples.ResultsAt last, leptin (LEP) was identified as a core gene through screening and was found to be upregulated. …”
    Get full text
    Article
  11. 1011

    Characterization of the salivary microbiome in healthy individuals under fatigue status by Xianhui Peng, Na Han, Yanan Gong, Lihua He, Yanli Xu, Di Xiao, Tingting Zhang, Yujun Qiang, Xiuwen Li, Wen Zhang, Jianzhong Zhang

    Published 2025-05-01
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. …”
    Get full text
    Article
  12. 1012

    A Two-Stage Penalized Logistic Regression Approach to Case-Control Genome-Wide Association Studies by Jingyuan Zhao, Zehua Chen

    Published 2012-01-01
    “…This approach consists of a screening stage and a selection stage. In the screening stage, main-effect and interaction-effect features are screened by using L1-penalized logistic like-lihoods. …”
    Get full text
    Article
  13. 1013

    High-performance computing for static security assessment of large power systems by Venkateswara Rao Kagita, Sanjaya Kumar Panda, Ram Krishan, P. Deepak Reddy, Jabba Aswanth

    Published 2023-12-01
    “…We perform extensive experiments to evaluate the efficacy of the proposed algorithm. As a result, we establish that the proposed parallel algorithm with high-performance computing (HPC) computing is much faster than the traditional algorithms. …”
    Get full text
    Article
  14. 1014

    Machine learning and multi-omics analysis reveal key regulators of proneural–mesenchymal transition in glioblastoma by Can Xu, Jin Yang, Huan Xiong, Xiaoteng Cui, Yuhao Zhang, Mingjun Gao, Lei He, Qiuyue Fang, Changxi Han, Wei Liu, Yangyang Wang, Jin Zhang, Ying Yuan, Zhaomu Zeng, Ruxiang Xu

    Published 2025-06-01
    “…The Lasso, Cox, and Step machine learning algorithms were used to construct and screen the optimal risk assessment prognostic model. …”
    Get full text
    Article
  15. 1015

    Identification of hub genes for the diagnosis associated with heart failure using multiple cell death patterns by Hua‐jing Yuan, Hui Yu, Yi‐ding Yu, Xiu‐juan Liu, Wen‐wen Liu, Yi‐tao Xue, Yan Li

    Published 2025-08-01
    “…Bioinformatics and machine learning algorithms were utilized to screen the HF key genes and PCD‐related HF hub genes, and an HF diagnostic model was constructed on this. …”
    Get full text
    Article
  16. 1016

    ERBB3-related gene PBX1 is associated with prognosis in patients with HER2-positive breast cancer by Shufen Mo, Haiming Zhong, Weiping Dai, Yuanyuan Li, Bin Qi, Taidong Li, Yongguang Cai

    Published 2025-01-01
    “…Utilizing three distinct machine learning algorithms, we identified three signature genes-PBX1, IGHM, and CXCL13-that exhibited significant diagnostic value within the diagnostic model. …”
    Get full text
    Article
  17. 1017

    Identification of three T cell-related genes as diagnostic and prognostic biomarkers for triple-negative breast cancer and exploration of potential mechanisms by Zhi-Chuan He, Zheng-Zheng Song, Zhe Wu, Peng-Fei Lin, Xin-Xing Wang

    Published 2025-06-01
    “…Differentially expressed genes (DEGs) between TNBC and other BRCA subtypes were intersected with T cell-related genes to identify candidate biomarkers. Machine learning algorithms were used to screen for key hub genes, which were then used to construct a logistic regression (LR) model. …”
    Get full text
    Article
  18. 1018

    Exploring pesticide risk in autism via integrative machine learning and network toxicology by Ling Qi, Jingran Yang, Qiao Niu, Jianan Li

    Published 2025-06-01
    “…Each combination of 1–23 targets was used to construct predictive models using eight different machine learning algorithms. …”
    Get full text
    Article
  19. 1019

    Machine learning-derived prognostic signature integrating programmed cell death and mitochondrial function in renal clear cell carcinoma: identification of PIF1 as a novel target by Guangyang Cheng, Zhaokai Zhou, Shiqi Li, Fu Peng, Shuai Yang, Chuanchuan Ren

    Published 2025-02-01
    “…Finally, a novel RCC prognostic marker PIF1 was identified in model genes. The knockdown of PIF1 in vitro inhibited the progression of renal carcinoma cells. …”
    Get full text
    Article
  20. 1020