Showing 961 - 980 results of 1,420 for search '(((made OR model) OR model) OR more) screening algorithm', query time: 0.21s Refine Results
  1. 961

    Prediction of Parallel Artificial Membrane Permeability Assay of Some Drugs from their Theoretically Calculated Molecular Descriptors by E. Konoz, Amir H. M. Sarrafi, S. Ardalani

    Published 2011-01-01
    “…In the present work, the permeation of miscellaneous drugs measured as flux by PAMPA (logF) of 94 drugs, are predicted by quantitative structure property relationships modeling based on a variety of calculated theoretical descriptors, which screened and selected by genetic algorithm (GA) variable subset selection procedure. …”
    Get full text
    Article
  2. 962

    Callback time preference for prescreening visits among Black residents in the Boston area: findings from two randomized controlled trials by Ruth Zeto, Oluwagbemisola Ibikunle, Jingyi Cao, Hannah Col, Dhrumil Patil, Ruth-Alma Turkson-Ocran, Mingyu Zhang, Timothy B. Plante, Stephen P. Juraschek

    Published 2025-08-01
    “…Staff call attempts and participant screening status were logged prospectively. Gender was estimated based on first name, using a published algorithm. …”
    Get full text
    Article
  3. 963

    FDTooth: Intraoral Photographs and CBCT Images for Fenestration and Dehiscence Detection by Keyuan Liu, Marawan Elbatel, Guang Chu, Zhiyi Shan, Fung Hou Kumoi Mineaki Howard Sum, Kuo Feng Hung, Chengfei Zhang, Xiaomeng Li, Yanqi Yang

    Published 2025-06-01
    “…The developed dataset and model can serve as valuable resources for research on interdisciplinary dental diagnostics, offering clinicians a non-invasive, efficient method for early FD screening without invasive procedures.…”
    Get full text
    Article
  4. 964

    An interpretable disruption predictor on EAST using improved XGBoost and SHAP by D.M. Liu, X.L. Zhu, Y.S. Jiang, S. Wang, S.B. Shu, B. Shen, B.H. Guo, L.C. Liu

    Published 2025-01-01
    “…Based on the physical characteristics of the disruption, 2094 disruption shots and 4858 non-disruption shots from 2022 to 2024 were screened as training shots, and then the disruption prediction model was trained using the eXtreme Gradient Boosting (XGBoost) algorithm from training samples consisting of 16 diagnostic signals, such as plasma current, density, and radiation. …”
    Get full text
    Article
  5. 965

    A cross-sectional study of evaluating cervical spondylotic myelopathy based on gait and plantar pressures by Xuhong Zhang, Zichuan Wu, Hanlin Song, Aochen Xu, Junbin Liu, Junzhe Sheng, Baifeng Sun, Min Qi, Chen Xu, Yang Liu

    Published 2025-06-01
    “…Although previous studies have objectively assessed CSM-specific gait patterns using motion cameras as well as mechanical platforms, these methods have limitations such as limited metrics that can be analyzed or inconvenience for simple screening. Therefore, there is a need to develop effective screening methods. …”
    Get full text
    Article
  6. 966

    Exploration of the Prognostic Markers of Multiple Myeloma Based on Cuproptosis‐Related Genes by Xiao‐Han Gao, Jun Yuan, Xiao‐Xia Zhang, Rui‐Cang Wang, Jie Yang, Yan Li, Jie Li

    Published 2025-03-01
    “…Additionally, key module genes were identified through weighted gene co‐expression network analysis. A univariate Cox algorithm and multivariate Cox analysis were employed to obtain biomarkers of MM and build a prognostic model before conducting independent prognostic analysis. …”
    Get full text
    Article
  7. 967
  8. 968

    Role of arachidonic acid metabolism in osteosarcoma prognosis by integrating WGCNA and bioinformatics analysis by Yaling Wang, Peichun HSU, Haiyan Hu, Feng Lin, Xiaokang Wei

    Published 2025-03-01
    “…An AA metabolism predictive model of the five AAMRGs were established by Cox regression and the LASSO algorithm. …”
    Get full text
    Article
  9. 969

    The Value of Subclinical Carotid Atherosclerosis for Primary Prevention of Cardiovascular Diseases. Review of the Main International Studies by E. K. Butina, E. V. Bochkareva

    Published 2016-11-01
    “…Measures for the prevention of cardiovascular diseases (CVD) are more effective if they are performed taking into account the risk factors of their development. …”
    Get full text
    Article
  10. 970

    ATP6AP1 drives pyroptosis-mediated immune evasion in hepatocellular carcinoma: a machine learning-guided therapeutic target by Lei Tang, Xiyue Wang, Zhengzheng Xia, Jiayu Yan, Shanshan Lin

    Published 2025-04-01
    “…Results Through a rigorous multi-algorithm screening process, ATP6AP1 was found to be a highly reliable biomarker with an area under the curve (AUC) of 0.979. …”
    Get full text
    Article
  11. 971

    Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning by Jonne Pohjankukka, Timo A. Räsänen, Timo P. Pitkänen, Arttu Kivimäki, Ville Mäkinen, Tapio Väänänen, Jouni Lerssi, Aura Salmivaara, Maarit Middleton

    Published 2025-03-01
    “…We carefully split the reference data into training and test sets, allowing for independent and robust model validation. Feature selection included an initial screening for multicollinearity using correlation-based feature pruning, followed by final selection using a genetic algorithm. …”
    Get full text
    Article
  12. 972

    Postpartum depression in Northeastern China: a cross-sectional study 6 weeks after giving birth by XuDong Huang, LiFeng Zhang, ChenYang Zhang, Jing Li, ChenYang Li

    Published 2025-05-01
    “…Feature importance was ranked via a random forest model based on the change in ROC-AUC after predictor removal. …”
    Get full text
    Article
  13. 973

    Drug–target interaction prediction by integrating heterogeneous information with mutual attention network by Yuanyuan Zhang, Yingdong Wang, Chaoyong Wu, Lingmin Zhan, Aoyi Wang, Caiping Cheng, Jinzhong Zhao, Wuxia Zhang, Jianxin Chen, Peng Li

    Published 2024-11-01
    “…DrugMAN uses a graph attention network-based integration algorithm to learn network-specific low-dimensional features for drugs and target proteins by integrating four drug networks and seven gene/protein networks collected by a certain screening conditions, respectively. …”
    Get full text
    Article
  14. 974

    Machine Learning for Predicting Zearalenone Contamination Levels in Pet Food by Zhenlong Wang, Wei An, Jiaxue Wang, Hui Tao, Xiumin Wang, Bing Han, Jinquan Wang

    Published 2024-12-01
    “…Other algorithms showed moderate accuracy, ranging from 77.1% to 84.8%. …”
    Get full text
    Article
  15. 975

    Interpretable machine learning for depression recognition with spatiotemporal gait features among older adults: a cross-sectional study in Xiamen, China by Shaowu Lin, Sicheng Li, Ya Fang

    Published 2025-07-01
    “…The developed machine learning models with high predictive accuracy, suggest the potential of Kinect-based gait assessment as a real-time and cost-effective screening tool for older adults with depressive symptoms.…”
    Get full text
    Article
  16. 976

    Detection of Undiagnosed Liver Cirrhosis via Artificial Intelligence-Enabled Electrocardiogram (DULCE): Rationale and design of a pragmatic cluster randomized clinical trial by Amy Olofson, Ryan Lennon, Blake Kassmeyer, Kan Liu, Zacchi I. Attia, David Rushlow, Puru Rattan, Joseph C. Ahn, Paul A. Friedman, Alina Allen, Patrick S. Kamath, Vijay H. Shah, Peter A. Noseworthy, Douglas A. Simonetto

    Published 2025-06-01
    “…A novel electrocardiogram (ECG)-enabled deep learning model trained for detection of advanced chronic liver disease (CLD) has demonstrated promising results and it may be used for screening of advanced CLD in primary care. …”
    Get full text
    Article
  17. 977

    Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation by Yoonsung Kwon, Asta Blazyte, Yeonsu Jeon, Yeo Jin Kim, Kyungwhan An, Sungwon Jeon, Hyojung Ryu, Dong-Hyun Shin, Jihye Ahn, Hyojin Um, Younghui Kang, Hyebin Bak, Byoung-Chul Kim, Semin Lee, Hyung-Tae Jung, Eun-Seok Shin, Jong Bhak

    Published 2025-02-01
    “…Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost. …”
    Get full text
    Article
  18. 978

    Exploring biomarkers and molecular mechanisms of Type 2 diabetes mellitus promotes colorectal cancer progression based on transcriptomics by Simin Luo, Yuhong Zhu, Zhanli Guo, Chuan Zheng, Xi Fu, Fengming You, Xueke Li

    Published 2025-02-01
    “…The diagnostic performance was assessed by supplementing external datasets to draw ROC curves on the diagnostic model. The diagnostic model was further screened for key genes by prognostic analysis. …”
    Get full text
    Article
  19. 979
  20. 980

    Prediction of EGFR mutations in non-small cell lung cancer: a nomogram based on 18F-FDG PET and thin-section CT radiomics with machine learning by Jianbo Li, Qin Shi, Yi Yang, Jikui Xie, Qiang Xie, Ming Ni, Xuemei Wang, Xuemei Wang

    Published 2025-04-01
    “…After selecting optimal radiomic features, four machine learning algorithms, including logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost), were used to develop and validate radiomics models. …”
    Get full text
    Article