Showing 441 - 460 results of 1,420 for search '(((made OR model) OR model) OR more) screening algorithm', query time: 0.19s Refine Results
  1. 441

    Student knowledge tracking based multi-indicator exercise recommendation algorithm by Bin ZHUGE, Zhenghu YIN, Wenxue SI, Lei YAN, Ligang DONG, Xian JIANG

    Published 2022-09-01
    “…Personalized exercise recommendation was an important topic in the era of education informatization, the forgetting laws of students in the learning process were ignored by the traditional problem recommendation algorithm, which failed to fully tap the students’ knowledge mastery level and the common characteristics of similar students, insufficient, could not reasonably promote students’ learning of new knowledge or help students find and fill omissions.In view of the above defects, a multi-index exercise recommendation method based on student knowledge tracking was proposed, which was divided into two modules: preliminary screening and re-filtering of exercises, focusing on the novelty, difficulty and diversity of exercise recommendation.Firstly, a knowledge probability prediction (SF-KCCP) model combined with students’ forgetting law was constructed to ensure the novelty of the recommended exercises.Then, students’ knowledge and concept mastery level was accurately excavated based on the dynamic key-value knowledge tracking (DKVMN) model to ensure that exercises of appropriate difficulty were recommended.Finally, the user-based collaborative filtering (UserCF) algorithm was integrated into the re-filtering module, and the similarity between student groups was used to achieve the diversity of recommendation results.The proposed method is demonstrated by extensive experiments to achieve better performance than some existing baseline models.…”
    Get full text
    Article
  2. 442

    Student knowledge tracking based multi-indicator exercise recommendation algorithm by Bin ZHUGE, Zhenghu YIN, Wenxue SI, Lei YAN, Ligang DONG, Xian JIANG

    Published 2022-09-01
    “…Personalized exercise recommendation was an important topic in the era of education informatization, the forgetting laws of students in the learning process were ignored by the traditional problem recommendation algorithm, which failed to fully tap the students’ knowledge mastery level and the common characteristics of similar students, insufficient, could not reasonably promote students’ learning of new knowledge or help students find and fill omissions.In view of the above defects, a multi-index exercise recommendation method based on student knowledge tracking was proposed, which was divided into two modules: preliminary screening and re-filtering of exercises, focusing on the novelty, difficulty and diversity of exercise recommendation.Firstly, a knowledge probability prediction (SF-KCCP) model combined with students’ forgetting law was constructed to ensure the novelty of the recommended exercises.Then, students’ knowledge and concept mastery level was accurately excavated based on the dynamic key-value knowledge tracking (DKVMN) model to ensure that exercises of appropriate difficulty were recommended.Finally, the user-based collaborative filtering (UserCF) algorithm was integrated into the re-filtering module, and the similarity between student groups was used to achieve the diversity of recommendation results.The proposed method is demonstrated by extensive experiments to achieve better performance than some existing baseline models.…”
    Get full text
    Article
  3. 443

    Preoperative prediction of recurrence risk factors in operable cervical cancer based on clinical-radiomics features by Xue Du, Xue Du, Chunbao Chen, Lu Yang, Yu Cui, Min Li

    Published 2025-02-01
    “…Logistic regression algorithms were used to construct a fusion clinical-radiomics model to visualize nomograms. …”
    Get full text
    Article
  4. 444

    Two-test algorithms for infectious disease diagnosis: Implications for COVID-19. by Sunil Pokharel, Lisa J White, Jilian A Sacks, Camille Escadafal, Amy Toporowski, Sahra Isse Mohammed, Solomon Chane Abera, Kekeletso Kao, Marcela De Melo Freitas, Sabine Dittrich

    Published 2022-01-01
    “…A two-test algorithm comprising a rapid screening test followed by confirmatory laboratory testing can reduce false positive rate, produce rapid results and conserve laboratory resources, but can lead to large number of missed cases in high prevalence setting. …”
    Get full text
    Article
  5. 445

    Development of a machine learning prognostic model for early prediction of scrub typhus progression at hospital admission based on clinical and laboratory features by Youguang Lu, Zixu Wang, Junhu Wang, Yingqing Mao, Chuanshen Jiang, Jinpiao Wu, Haizhou Liu, Haiming Yi, Chao Chen, Wei Guo, Liguan Liu, Yong Qi

    Published 2025-12-01
    “…Eighteen objective clinical and laboratory features collected at admission were screened using various feature selection algorithms, and used to construct models based on six machine learning algorithms.Results The model based on Gradient Boosting Decision Tree using 14 features screened by Recursive Feature Elimination was evaluated as the optimal one. …”
    Get full text
    Article
  6. 446
  7. 447

    Panel defect detection algorithm based on improved Faster R-CNN by Chen Wanqin, Tang Qingshan, Huang Tao

    Published 2022-01-01
    “…Experimental results show that the accuracy and recognition rate of the optimized network model have been greatly improved.…”
    Get full text
    Article
  8. 448
  9. 449

    Analysis of immune characteristics and inflammatory mechanisms in COPD patients: a multi-layered study combining bulk and single-cell transcriptome analysis and machine learning by Changjin Wei, Yongfeng Zhu, Caiming Chen, Feipeng Li, Li Zheng

    Published 2025-07-01
    “…Inflammatory-related COPD feature genes were selected using Lasso regression and random forest algorithms, and a COPD risk prediction model was constructed. …”
    Get full text
    Article
  10. 450

    Socially Responsible Investment Portfolio Construction with a Double-Screening Mechanism considering Machine Learning Prediction by Jun Zhang, Xuedong Chen

    Published 2021-01-01
    “…The proposed models consist of two stages, i.e., stock screening and asset allocation. …”
    Get full text
    Article
  11. 451
  12. 452

    Predicting algorithm of attC site based on combination optimization strategy by Zhendong Liu, Xi Chen, Dongyan Li, Xinrong Lv, Mengying Qin, Ke Bai, Zhiqiang He, Yurong Yang, Xiaofeng Li, Qionghai Dai

    Published 2022-12-01
    “…Based on the structural features of attC sites, the prediction algorithm realises the high-precision prediction of the recombination frequencies between sites and the screening of the top 20 important features that play a role in recombination, which are effective for improving the design method of attC sites. …”
    Get full text
    Article
  13. 453
  14. 454
  15. 455

    Glypican-3 regulated epithelial mesenchymal transformation-related genes in osteosarcoma: based on comprehensive tumor microenvironment profiling by Jiaming Zhang, Wei Wang

    Published 2025-05-01
    “…The least absolute shrinkage and selection operator (LASSO) algorithm was applied to screen candidate genes for developing a prognostic model. …”
    Get full text
    Article
  16. 456

    Identification of potential pathogenic genes associated with the comorbidity of rheumatoid arthritis and renal fibrosis using bioinformatics and machine learning by Jiao Qiu, Yalin Xu, Luyuan Tong, Xingchun Yang, Xiao Wu

    Published 2025-07-01
    “…Subsequently, functional enrichment analysis was performed to clarify the biological functions of these genes. Machine learning algorithms were used to screen for the hub RA-RF differential expression genes, and then a Logistic Regression (LR) model was constructed. …”
    Get full text
    Article
  17. 457

    Genome-wide expression in human whole blood for diagnosis of latent tuberculosis infection: a multicohort research by Fan Jiang, Fan Jiang, Fan Jiang, Yanhua Liu, Linsheng Li, Linsheng Li, Ruizi Ni, Ruizi Ni, Yajing An, Yajing An, Yufeng Li, Yufeng Li, Lingxia Zhang, Wenping Gong

    Published 2025-05-01
    “…A Naive Bayes (NB) model incorporating these two markers demonstrated robust diagnostic performance: training set AUC: median = 0.8572 (inter-quartile range 0.8002, 0.8708), validation AUC = 0.5719 (0.51645, 0.7078), and subgroup AUC = 0.8635 (0.8212, 0.8946).ConclusionOur multicohort analysis established an NB-based diagnostic model utilizing S100A12/S100A8, which maintains diagnostic accuracy across diverse geographic, ethnic, and clinical variables (including HIV co-infection), highlighting its potential for clinical translation in LTBI/ATB differentiation.…”
    Get full text
    Article
  18. 458

    High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics by Yuhui Li, Guolin Wan, Yongqian Zhu, Jingyu Yang, Yan-Fang Zhang, Jinbo Pan, Shixuan Du

    Published 2024-11-01
    “…Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. …”
    Get full text
    Article
  19. 459

    Analysis and Prediction of CET4 Scores Based on Data Mining Algorithm by Hongyan Wang

    Published 2021-01-01
    “…In order to detect potential risk graduating students earlier, this paper proposes an appropriate and timely early warning and preschool K-nearest neighbor algorithm classification model. Taking test scores or make-up exams and re-learning as input features, the classification model can effectively predict ordinary students who have not graduated.…”
    Get full text
    Article
  20. 460

    Birdsong Recognition Based on Attention Hash Algorithm Combined with Contrastive Loss by WANG Yuwei, CHEN Aibin, ZHOU Guoxiong, ZHANG Zhiqiang

    Published 2024-12-01
    “…Aiming at the problems of length misalignment, redundancy, noise and large intra-class differences in birdsong data collected in the natural environment, an automatic birdsong recognition model composed of a two-stage hash algorithm based on multi- level attention and a lightweight classifier based on fusion contrastive loss is proposed. …”
    Get full text
    Article