Showing 261 - 280 results of 1,420 for search '(((made OR model) OR model) OR more) screening algorithm', query time: 0.20s Refine Results
  1. 261

    Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA by Quan Wang, Zhaogang Zhang

    Published 2025-06-01
    “…In response to this challenge, this study constructed a collaborative optimization framework based on the Kriging surrogate model and the multi-island genetic algorithm (MIGA). …”
    Get full text
    Article
  2. 262

    Artificial Intelligence and Machine Learning Models for Predicting Drug-Induced Kidney Injury in Small Molecules by Mohan Rao, Vahid Nassiri, Sanjay Srivastava, Amy Yang, Satjit Brar, Eric McDuffie, Clifford Sachs

    Published 2024-11-01
    “…Machine learning (ML) models were developed using four algorithms: Ridge Logistic Regression (RLR), Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN). …”
    Get full text
    Article
  3. 263

    A warning model for predicting patient admissions to the intensive care unit (ICU) following surgery by Li Li, Hongye He, Linjun Xiang, Yongxiang Wang

    Published 2025-06-01
    “…LASSO regression and random forest algorithms were used to screen clinical variables related to postoperative ICU admission. …”
    Get full text
    Article
  4. 264

    Machine learning-based prognostic prediction model of pneumonia-associated acute respiratory distress syndrome by Jing Lv, Juan Chen, Meijun Liu, Xue Dai, Wang Deng

    Published 2025-07-01
    “…The AUC value, AP value, accuracy, sensitivity, specificity, Brier score, and F 1 score were used to evaluate the performance of the models and pick the optimal model. Finally, the SHAP feature importance map was drawn to explain the optimal model.Results10 key variables, namely LAR, Lac, pH, age, PO2/FiO2, ALB, BMI, TP, PT, DBIL were screened using the filtration method. …”
    Get full text
    Article
  5. 265

    An Updated Systematic Review on Asthma Exacerbation Risk Prediction Models Between 2017 and 2023: Risk of Bias and Applicability by Liu A, Zhang Y, Yadav CP, Chen W

    Published 2025-04-01
    “…We then applied the Prediction Risk of Bias Assessment tool (PROBAST) to assess the risk of bias and applicability of the included models.Results: Of 415 studies screened, 10 met eligibility criteria, comprising 41 prediction models. …”
    Get full text
    Article
  6. 266

    A deep learning model to predict Ki-67 positivity in oral squamous cell carcinoma by Francesco Martino, Gennaro Ilardi, Silvia Varricchio, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla

    Published 2024-12-01
    “…Aside from classification, detection, and segmentation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory activity, lowering consumable usage and turnaround time. …”
    Get full text
    Article
  7. 267
  8. 268
  9. 269

    Novel exosome-associated LncRNA model predicts colorectal cancer prognosis and drug response by Chi Zhou, Qian Qiu, Xinyu Liu, Tiantian Zhang, Leilei Liang, Yihang Yuan, Yufo Chen, Weijie Sun

    Published 2025-05-01
    “…Next, we further provide colony formation assay, Transwell assay and xenograft models to understand the carcinogenic effect of MIR4713HG. …”
    Get full text
    Article
  10. 270

    Research Progress in the Screening of Antimicrobial Substances Based on Machine Learning by HOU Jiangxia, JIANG Jinhui, WANG Chenxin, WANG Lan, SHI Liu, WU Wenjin, GUO Xiaojia, CHEN Sheng, CHEN Lang, CAO Feng, SUN Li, ZHOU Zhi

    Published 2025-07-01
    “…As a branch of artificial intelligence, machine learning algorithms have demonstrated exceptional capabilities in processing large-scale data, feature extraction, and model optimization, leading to their increasing application in the screening of antimicrobial substances. …”
    Get full text
    Article
  11. 271

    Machine learning-based coronary heart disease diagnosis model for type 2 diabetes patients by Yingxi Chen, Chunyu Wang, Chunyu Wang, Xiaozhu Liu, Minjie Duan, Tianyu Xiang, Haodong Huang, Haodong Huang

    Published 2025-05-01
    “…Five machine learning algorithms, including Logistic regression, Support Vector Machine (SVM), Random Forest (RF), eXtreme gradient boosting (XgBoost), and Light Gradient Boosting Machine (LightGBM), were selected for modeling. …”
    Get full text
    Article
  12. 272

    A Predictive Model for Secondary Posttonsillectomy Hemorrhage in Pediatric Patients: An 8‐Year Retrospective Study by Yuting Ge, Wenchuan Chang, Lixiao Xie, Yan Gao, Yue Xu, Huie Zhu

    Published 2025-02-01
    “…Univariate logistic regression analysis was used to screen features. Multivariate logistic regression and seven machine learning algorithms were used to construct predictive models. …”
    Get full text
    Article
  13. 273

    Practical applications of methods to incorporate patient preferences into medical decision models: a scoping review by Jakub Fusiak, Kousha Sarpari, Inger Ma, Ulrich Mansmann, Verena S. Hoffmann

    Published 2025-03-01
    “…Abstract Background Algorithms and models increasingly support clinical and shared decision-making. …”
    Get full text
    Article
  14. 274

    Accurate prediction of mediolateral episiotomy risk during labor: development and verification of an artificial intelligence model by Tingting Hu, Liheng Zhao, Xueling Zhao, Lin He, Xiaoli Zhong, Zhe Yin, Junjie Chen, Yanting Han, Ka Li

    Published 2025-03-01
    “…Results Twenty eight factors influencing mediolateral episiotomy were screened. The model evaluation results showed that the SVM model has the best prediction ability among the six models, with an accuracy of 0.793, a recall rate of 0.981, a precision rate of 0.790, and a F1 value of 0.875. …”
    Get full text
    Article
  15. 275

    Screening for nasopharyngeal carcinoma in high-incidence regions——Next steps by Allan Hildesheim

    Published 2024-09-01
    “…Future efforts should focus on implementing screening programs in high-incidence populations, assessing and refining screening algorithms, and exploring new, potentially more cost-effective screening methods. …”
    Get full text
    Article
  16. 276

    Development of an ensemble prediction model for acute graft-versus-host disease in allogeneic transplantation based on machine learning by Lin Song, Xingwei Wu, Mengjia Xu, Ling Xue, Xun Yu, Zongqi Cheng, Chenrong Huang, Liyan Miao

    Published 2025-07-01
    “…Then fifteen algorithms were used to establish models, and an ensemble model was established through soft voting based on the top five performance algorithms. …”
    Get full text
    Article
  17. 277
  18. 278

    Explainable Artificial Intelligence Driven Segmentation for Cervical Cancer Screening by Niruthikka Sritharan, Nishaanthini Gnanavel, Prathushan Inparaj, Dulani Meedeniya, Pratheepan Yogarajah

    Published 2025-01-01
    “…This represents a pioneering application of explainability techniques in the context of cervical cancer screening. Among the classification models explored, including fine-tuned variants of VGGNet and XceptionNet, VGG16-Adapted128 achieved the highest performance, marked by an accuracy of 0.94, precision of 0.94, recall of 0.94, and an F1 score of 0.94. …”
    Get full text
    Article
  19. 279

    Fuzzy Decision-Making Analysis of Quantitative Stock Selection in VR Industry Based on Random Forest Model by Jia-Ming Zhu, Yu-Gan Geng, Wen-Bo Li, Xia Li, Qi-Zhi He

    Published 2022-01-01
    “…Different from the analysis of quantitative stock selection by constructing a logistics multifactor stock selection model in the existing research, the research mainly adopts the random forest algorithm based on fuzzy mathematics to construct the initial investment strategy portfolio. …”
    Get full text
    Article
  20. 280

    Development and validation of an explainable machine learning model for predicting osteoporosis in patients with type 2 diabetes mellitus by Qipeng Wei, Zihao Liu, Xiaofeng Chen, Hao Li, Weijun Guo, Qingyan Huang, Jinxiang Zhan, Shiji Chen, Dongling Cai, Dongling Cai

    Published 2025-08-01
    “…Potential predictive features were identified using univariate analysis, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm. Eight supervised ML algorithms were applied to construct predictive models. …”
    Get full text
    Article