Showing 1,001 - 1,020 results of 1,420 for search '(((made OR ((model OR model) OR model)) OR model) OR more) screening algorithm', query time: 0.14s Refine Results
  1. 1001

    ATP6AP1 drives pyroptosis-mediated immune evasion in hepatocellular carcinoma: a machine learning-guided therapeutic target by Lei Tang, Xiyue Wang, Zhengzheng Xia, Jiayu Yan, Shanshan Lin

    Published 2025-04-01
    “…Results Through a rigorous multi-algorithm screening process, ATP6AP1 was found to be a highly reliable biomarker with an area under the curve (AUC) of 0.979. …”
    Get full text
    Article
  2. 1002

    Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning by Jonne Pohjankukka, Timo A. Räsänen, Timo P. Pitkänen, Arttu Kivimäki, Ville Mäkinen, Tapio Väänänen, Jouni Lerssi, Aura Salmivaara, Maarit Middleton

    Published 2025-03-01
    “…We carefully split the reference data into training and test sets, allowing for independent and robust model validation. Feature selection included an initial screening for multicollinearity using correlation-based feature pruning, followed by final selection using a genetic algorithm. …”
    Get full text
    Article
  3. 1003

    Postpartum depression in Northeastern China: a cross-sectional study 6 weeks after giving birth by XuDong Huang, LiFeng Zhang, ChenYang Zhang, Jing Li, ChenYang Li

    Published 2025-05-01
    “…Feature importance was ranked via a random forest model based on the change in ROC-AUC after predictor removal. …”
    Get full text
    Article
  4. 1004

    Drug–target interaction prediction by integrating heterogeneous information with mutual attention network by Yuanyuan Zhang, Yingdong Wang, Chaoyong Wu, Lingmin Zhan, Aoyi Wang, Caiping Cheng, Jinzhong Zhao, Wuxia Zhang, Jianxin Chen, Peng Li

    Published 2024-11-01
    “…DrugMAN uses a graph attention network-based integration algorithm to learn network-specific low-dimensional features for drugs and target proteins by integrating four drug networks and seven gene/protein networks collected by a certain screening conditions, respectively. …”
    Get full text
    Article
  5. 1005

    Machine Learning for Predicting Zearalenone Contamination Levels in Pet Food by Zhenlong Wang, Wei An, Jiaxue Wang, Hui Tao, Xiumin Wang, Bing Han, Jinquan Wang

    Published 2024-12-01
    “…Other algorithms showed moderate accuracy, ranging from 77.1% to 84.8%. …”
    Get full text
    Article
  6. 1006

    Interpretable machine learning for depression recognition with spatiotemporal gait features among older adults: a cross-sectional study in Xiamen, China by Shaowu Lin, Sicheng Li, Ya Fang

    Published 2025-07-01
    “…The developed machine learning models with high predictive accuracy, suggest the potential of Kinect-based gait assessment as a real-time and cost-effective screening tool for older adults with depressive symptoms.…”
    Get full text
    Article
  7. 1007

    Detection of Undiagnosed Liver Cirrhosis via Artificial Intelligence-Enabled Electrocardiogram (DULCE): Rationale and design of a pragmatic cluster randomized clinical trial by Amy Olofson, Ryan Lennon, Blake Kassmeyer, Kan Liu, Zacchi I. Attia, David Rushlow, Puru Rattan, Joseph C. Ahn, Paul A. Friedman, Alina Allen, Patrick S. Kamath, Vijay H. Shah, Peter A. Noseworthy, Douglas A. Simonetto

    Published 2025-06-01
    “…A novel electrocardiogram (ECG)-enabled deep learning model trained for detection of advanced chronic liver disease (CLD) has demonstrated promising results and it may be used for screening of advanced CLD in primary care. …”
    Get full text
    Article
  8. 1008

    Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation by Yoonsung Kwon, Asta Blazyte, Yeonsu Jeon, Yeo Jin Kim, Kyungwhan An, Sungwon Jeon, Hyojung Ryu, Dong-Hyun Shin, Jihye Ahn, Hyojin Um, Younghui Kang, Hyebin Bak, Byoung-Chul Kim, Semin Lee, Hyung-Tae Jung, Eun-Seok Shin, Jong Bhak

    Published 2025-02-01
    “…Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost. …”
    Get full text
    Article
  9. 1009

    Multi-Dimensional Lithology Identification Method Based on Microresistivity Image Logging by LIU Juan, MIN Xuanlin, QI Zhongli, YI Jun, LAI Fuqiang, ZHOU Wei

    Published 2023-12-01
    “…For the electrical imaging color features of different resistivity responses (mudstone, calcareous mudstone and sandy mudstone), K-means++ algorithm is used to screen out the clustering centers of the overall distribution of the data set to achieve fast classification of the electro-imaging colors. …”
    Get full text
    Article
  10. 1010

    Estimation of Canopy Chlorophyll Content of Apple Trees Based on UAV Multispectral Remote Sensing Images by Juxia Wang, Yu Zhang, Fei Han, Zhenpeng Shi, Fu Zhao, Fengzi Zhang, Weizheng Pan, Zhiyong Zhang, Qingliang Cui

    Published 2025-06-01
    “…The estimation models for the SPAD values in different growth stages were, respectively, established through five machine learning algorithms: multiple linear regression (MLR), partial least squares regression (PLSR), support vector regression (SVR), random forest (RF) and extreme gradient boosting (XGBoost). …”
    Get full text
    Article
  11. 1011

    Fundus camera-based precision monitoring of blood vitamin A level for Wagyu cattle using deep learning by Nanding Li, Naoshi Kondo, Yuichi Ogawa, Keiichiro Shiraga, Mizuki Shibasaki, Daniele Pinna, Moriyuki Fukushima, Shinichi Nagaoka, Tateshi Fujiura, Xuehong De, Tetsuhito Suzuki

    Published 2025-02-01
    “…This study developed a handheld camera system capable of capturing cattle fundus images and predicting vitamin A levels in real time using deep learning. 4000 fundus images from 50 Japanese Black cattle were used to train and test the prediction algorithms, and the model achieved an average 87%, 83%, and 80% accuracy for three levels of vitamin A deficiency classification (particularly 87% for severe level), demonstrating the effectiveness of camera system in vitamin A deficiency prediction, especially for screening and early warning. …”
    Get full text
    Article
  12. 1012
  13. 1013
  14. 1014

    Plasma FGF2 and YAP1 as novel biomarkers for MCI in the elderly: analysis via bioinformatics and clinical study by Yejing Zhao, Yejing Zhao, Xiang Wang, Jie Zhang, Yanyan Zhao, Yi Li, Ji Shen, Ying Yuan, Jing Li

    Published 2025-08-01
    “…To address this gap, datasets GSE29378 and GSE12685 were selected to screen differentially expressed genes (DEGs), and hub genes were identified by different algorithms. …”
    Get full text
    Article
  15. 1015

    Immune Evasion Mechanism Mediated by ITPRIPL1 and Its Prognostic Implications in Glioma by Zou Xiaoyun, Ye Wenhao, Wu Huan, Yang Yuanyuan, Liu Changqing, Wen Hebao, Ma Caiyun

    Published 2025-08-01
    “…Ninety‐eight machine learning algorithm combinations were screened to identify the optimal predictive model. …”
    Get full text
    Article
  16. 1016

    Case-control study combined with machine learning techniques to identify key genetic variations in GSK3B that affect susceptibility to diabetic kidney diseases by Jinfang Song, Yi Xu, Liu Xu, Tingting Yang, Ya Chen, Changjiang Ying, Qian Lu, Tao Wang, Xiaoxing Yin

    Published 2025-06-01
    “…On the other hand, the expression levels and kinase activity of GSK3β in exosomes differed significantly between patients with different genotypes of the GSK3B, suggesting that the effect of GSK3B gene polymorphisms on GSK3β expression and activity may be an important mechanism leading to individual differences in susceptibility to DKD. XG Boost algorithm model identified rs60393216 and rs1488766 as important biomarkers for clinical early warning of DKD.…”
    Get full text
    Article
  17. 1017

    Identification and validation of endoplasmic reticulum stress-related diagnostic biomarkers for type 1 diabetic cardiomyopathy based on bioinformatics and machine learning by Qiao Tang, Yanwei Ji, Zhongyuan Xia, Yuxi Zhang, Chong Dong, Chong Dong, Qian Sun, Shaoqing Lei

    Published 2025-03-01
    “…The ERDEGs diagnostic model was developed based on a combination of LASSO and Random Forest approaches, and the diagnostic performance was evaluated by the area under the receiver operating characteristic curve (ROC-AUC) and validated against external datasets. …”
    Get full text
    Article
  18. 1018

    The Future of Minimally Invasive GI and Capsule Diagnostics (REFLECT), October 2024 by Lea Østergaard Hansen, Alexandra Agache, Anastasios Koulaouzidis

    Published 2025-03-01
    “…The symposium also highlighted the significance of predictive models for patient selection and developments in panenteric CE. …”
    Get full text
    Article
  19. 1019

    Effect of miR-200c on inducing autophagy and apoptosis of HT22 cells from mouse hippocampal neurons via regulating PRDM1 protein: a bioinformatics analysis by W. Wu, J. Fu, Q. Liu, Q. Wang, S. Gao, X. Deng, C. Shen

    Published 2025-12-01
    “…The Support Vector Machine (SVM) algorithm in the Weka software was used to process, model, and screen the available miRNA data. …”
    Get full text
    Article
  20. 1020

    A low-cost platform for automated cervical cytology: addressing health and socioeconomic challenges in low-resource settings by José Ocampo-López-Escalera, Héctor Ochoa-Díaz-López, Xariss M. Sánchez-Chino, César A. Irecta-Nájera, Saúl D. Tobar-Alas, Martha Rosete-Aguilar

    Published 2025-03-01
    “…This disease is preventable and curable if detected in early stages, making regular screening critically important. Cervical cytology, the most widely used screening method, has proven highly effective in reducing cervical cancer incidence and mortality in high income countries. …”
    Get full text
    Article