Showing 341 - 360 results of 1,420 for search '(((made OR (((model OR model) OR model) OR model)) OR model) OR more) screening algorithm', query time: 0.25s Refine Results
  1. 341

    Machine learning prediction model with shap interpretation for chronic bronchitis risk assessment based on heavy metal exposure: a nationally representative study by Tiansheng Xia, Kaiyu Han

    Published 2025-05-01
    “…Methods Weighted logistic regression was used to assess the association of 14 blood and urine heavy metals with CB based on nationally representative samples from the 2005–2015 National Health and Nutrition Examination Survey (NHANES). The Boruta algorithm was further applied to screen the characteristic variables and construct 10 ML models. …”
    Get full text
    Article
  2. 342

    AI-based Assessment of Risk Factors for Coronary Heart Disease in Patients With Diabetes Mellitus and Construction of a Prediction Model for a Treatment Regimen by Zhen Gao, Qiyuan Bai, Mingyu Wei, Hao Chen, Yan Yan, Jiahao Mao, Xiangzhi Kong, Yang Yu

    Published 2025-06-01
    “…Conclusions: Using machine-learning algorithms, we built a prediction model of a treatment plan for patients with concomitant DM and CHD by integrating patients' information and screened the best feature set containing 15 features, which provides help and strategies to develop the best treatment plan for patients with concomitant DM and CHD.…”
    Get full text
    Article
  3. 343

    Low-cost and scalable machine learning model for identifying children and adolescents with poor oral health using survey data: An empirical study in Portugal. by Susana Lavado, Eduardo Costa, Niclas F Sturm, Johannes S Tafferner, Octávio Rodrigues, Pedro Pita Barros, Leid Zejnilovic

    Published 2025-01-01
    “…Such a model could enable scalable and cost-effective screening and targeted interventions, optimizing limited resources to improve oral health outcomes. …”
    Get full text
    Article
  4. 344

    A novel prediction model for the prognosis of non-small cell lung cancer with clinical routine laboratory indicators: a machine learning approach by Yuli Wang, Na Mei, Ziyi Zhou, Yuan Fang, Jiacheng Lin, Fanchen Zhao, Zhihong Fang, Yan Li

    Published 2024-11-01
    “…Finally, critical variables in the optimal model were screened based on the interpretable algorithms to build a decision tree to facilitate clinical application. …”
    Get full text
    Article
  5. 345
  6. 346

    Development and validation of an early predictive model for hemiplegic shoulder pain: a comparative study of logistic regression, support vector machine, and random forest by Qiang Wu, Qiang Wu, Fang Zhang, Yuchang Fei, Zhenfen Sima, Shanshan Gong, Qifeng Tong, Qingchuan Jiao, Hao Wu, Jianqiu Gong, Jianqiu Gong

    Published 2025-06-01
    “…ObjectiveIn this study, we aim to identify the predictive variables for hemiplegic shoulder pain (HSP) through machine learning algorithms, select the optimal model and predict the occurrence of HSP.MethodsData of 332 stroke patients admitted to a tertiary hospital in Zhejiang Province from January 2022 to January 2023 were collected. …”
    Get full text
    Article
  7. 347

    Molecular characterization and prognostic modeling associated with M2-like tumor-associated macrophages in breast cancer: revealing the immunosuppressive role of DLG3 by Ziqiang Wang, Jing Zhang, Huili Chen, Xinyu Zhang, Kai Zhang, Feiyue Zhang, Yiluo Xie, Hongyu Ma, Linfeng Pan, Qiang Zhang, Min Lu, Hongtao Wang, Chaoqun Lian

    Published 2025-08-01
    “…Consensus clustering analysis identified three molecular subtypes with distinct clinical features, and we explored potential differences in genomic mutations, pathway enrichment, and immune infiltration in patients between subtypes. Machine learning algorithms were used to screen key genes and construct M2-like macrophage-associated prognostic models. …”
    Get full text
    Article
  8. 348

    Algorithm for alerting the unmanned aerial vehicle operator based on the image potential obstacle borders detection on the flight trajectory using the OPEN CV library by V. Yu. Stepanov, E. A. Hvitko

    Published 2019-02-01
    “…Then the conclusion is made about necessity of development of algorithm and software, which can help the operator of the UAV in deciding on necessary trajectory changes of UAV, since, for example, guided solely by the method image of the terrain or another similar method in the planning of the UAV trajectory as preliminary preparation for the flight, however, such methods are fairly static and are not suitable in such situations as, for example, detection of unexpected obstacles. …”
    Get full text
    Article
  9. 349

    A Seasonal Fresh Tea Yield Estimation Method with Machine Learning Algorithms at Field Scale Integrating UAV RGB and Sentinel-2 Imagery by Huimei Liu, Yun Liu, Weiheng Xu, Mei Wu, Leiguang Wang, Ning Lu, Guanglong Ou

    Published 2025-01-01
    “…Subsequently, these 26 features were screened using the random forest algorithm and Pearson correlation analysis. …”
    Get full text
    Article
  10. 350
  11. 351
  12. 352
  13. 353

    Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain knowledge integration by Gudi V. Chandra Sekhar, Chekol Alemu

    Published 2025-07-01
    “…Machine learning offers promising solutions for automated detection, but systematic algorithm comparison using clinically validated data remains limited. …”
    Get full text
    Article
  14. 354

    Non-Invasive Detection of Breast Cancer by Low-Coverage Whole-Genome Sequencing from Plasma by Li Peng, Ru Yao, Sihang Gao, Yang Qu, Li Qu, Jingbo Zhang, Yidong Zhou

    Published 2023-07-01
    “…Our approach adopted principal component analysis and a generalized linear model algorithm to distinguish between breast cancer and normal samples. …”
    Get full text
    Article
  15. 355

    Multimodal data integration with machine learning for predicting PARP inhibitor efficacy and prognosis in ovarian cancer by Xi’an Xiong, Li Cai, Li Cai, Zhen Yang, Zhongping Cao, Nayiyuan Wu, Nayiyuan Wu, Qianxi Ni

    Published 2025-06-01
    “…Patient-specific efficacy and prognosis prediction models were then constructed using various machine learning algorithms.ResultsTotal bile acids (TBAs) and CA-199 present as an independent risk factor in Cox multivariate analysis for primary and recurrent ovarian cancer patients respectively (P < 0.05). …”
    Get full text
    Article
  16. 356

    Clinical efficacy of DSA-based features in predicting outcomes of acupuncture intervention on upper limb dysfunction following ischemic stroke by Yuqi Tang, Sixian Hu, Yipeng Xu, Linjia Wang, Yu Fang, Pei Yu, Yaning Liu, Jiangwei Shi, Junwen Guan, Ling Zhao

    Published 2024-11-01
    “…We applied three deep-learning algorithms (YOLOX, FasterRCNN, and TOOD) to develop the object detection model. …”
    Get full text
    Article
  17. 357

    Development of a PANoptosis-related LncRNAs for prognosis predicting and immune infiltration characterization of gastric Cancer by Yangjian Hong, Cong Luo, Yanyang Liu, Zeng Wang, Huize Shen, Wenyuan Niu, Jiaming Ge, Jie Xuan, Gaofeng Hu, Bowen Li, Qinglin Li, Huangjie Zhang

    Published 2025-03-01
    “…PANoptosis-related genes were obtained from molecular characteristic databases, and PANlncRNAs were screened through Pearson correlation analysis. Based on this, PANlncRNAs were subjected to univariate Cox regression analysis using the least absolute shrinkage and selection operator (LASSO) algorithm to obtain lncRNA associated with survival outcomes, which were subsequently used to calculate survival scores and to construct signatures. …”
    Get full text
    Article
  18. 358

    Regional Brain Aging Disparity Index: Region-Specific Brain Aging State Index for Neurodegenerative Diseases and Chronic Disease Specificity by Yutong Wu, Shen Sun, Chen Zhang, Xiangge Ma, Xinyu Zhu, Yanxue Li, Lan Lin, Zhenrong Fu

    Published 2025-06-01
    “…This study proposes a novel brain-region-level aging assessment paradigm based on Shapley value interpretation, aiming to overcome the interpretability limitations of traditional brain age prediction models. Although deep-learning-based brain age prediction models using neuroimaging data have become crucial tools for evaluating abnormal brain aging, their unidimensional brain age–chronological age discrepancy metric fails to characterize the regional heterogeneity of brain aging. …”
    Get full text
    Article
  19. 359

    Predicting immune status and gene mutations in stomach adenocarcinoma patients based on inflammatory response-related prognostic features by Huanjun Li, Jingtang Chen, Zhiliang Chen, Jingsheng Liao

    Published 2025-04-01
    “…Genes associated with STAD prognosis were obtained from the intersection of inflammation-related genes and DEGs. The key genes screened by last absolute shrinkage and selection operator (LASSO) Cox and stepwise regression analyses were used to construct prognostic models and nomograms. …”
    Get full text
    Article
  20. 360