Search alternatives:
resource » source (Expand Search)
Showing 541 - 560 results of 2,685 for search '((( resource OR success) detection function ) OR ( sources detection function ))', query time: 2.87s Refine Results
  1. 541

    Measuring the Three-Dimensional Volume Scattering Functions of Microsphere Suspension: Design and Laboratory Experiments by Wanyan Wang, Kecheng Yang, Wei Li, Long Yu, Wenping Guo, Min Xia

    Published 2019-01-01
    “…The measurement of the volume scattering function (VSF) of suspended particles is an ongoing research topic since it has the potential to provide a rapid, nondestructive means of analyzing hydrosols. …”
    Get full text
    Article
  2. 542

    Simultaneous Model Change Detection in Multivariate Linear Regression With Application to Indonesian Economic Growth Data by Wayan Somayasa, Muhammad Kabil Djafar, Norma Muhtar, Desak Ketut Sutiari

    Published 2024-01-01
    “…In this paper, we study asymptotic model change detection in multivariate linear regression by using the Kolmogorov–Smirnov function of the partial sum process of recursive residuals. …”
    Get full text
    Article
  3. 543

    Lightweight coal miners and manned vehicles detection model based on deep learning and model compression techniques: A case study of coal mines in Guizhou region by Beijing XIE, Heng LI, Zheng LUAN, Zhen LEI, Xiaoxu LI, Zhuo LI

    Published 2025-02-01
    “…Compared to various lightweight architectures and advanced detection models, this method demonstrates excellent accuracy, lower computational costs, and better real-time performance, providing a feasible coal mine pedestrian-vehicle detection method for resource-constrained coal mine scenarios, meeting the deployment requirements of coal mine video surveillance and enabling real-time alerts for intelligent inspection of coal mine pedestrian-vehicles.…”
    Get full text
    Article
  4. 544

    Energy-Efficiency using Critical Nodes Detection Problem in Industrial Wireless Sensor Networks (IWSNs) by Karima MOULEY, Mohamed Amin TAHRAOUI, Abdelaziz KELLA

    Published 2025-03-01
    “…Experiments simulation validates our proposed approach, approving its efficiency in reducing significant energy consumption while preserving connectivity and functionality for industrial systems. Furthermore, the results highlight the potential of using critical node analysis to support sustainable and efficient operations in resource-constrained industrial environments. …”
    Get full text
    Article
  5. 545

    Research on Improved Bridge Surface Disease Detection Algorithm Based on YOLOv7-Tiny-DBB by Haichao An, Ying Fan, Zhuobin Jiao, Meiqin Liu

    Published 2025-03-01
    “…The results indicate that, compared to the YOLOv7-Tiny algorithm, the improved algorithm achieves an increase of 4.2% in precision, 6.5% in recall, 5.4% in F1 score, and 7.3% in mean Average Precision (mAP). Additionally, the detection speed improves by 13.1 FPS, successfully addressing the issue of missed detections for minor diseases. …”
    Get full text
    Article
  6. 546

    Simple Single-Person Fall Detection Model Using 3D Pose Estimation Mechanisms by Jinmo Yang, R. Young Chul Kim

    Published 2024-01-01
    “…Although various technologies with wearables and vision systems that utilize artificial intelligence (AI) have been developed to detect falls, many AI models are complex and resource-intensive. …”
    Get full text
    Article
  7. 547

    Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms by Roberta Puglisi, Caterina Testa, Sara Scuderi, Valentina Greco, Giuseppe Trusso Sfrazzetto, Manuel Petroselli, Andrea Pappalardo

    Published 2024-12-01
    “…Fluorescence titrations and density functional theory (DFT) calculations reveal and explain the high binding affinity of this receptor toward selected amines, demonstrating its potential as an effective tool for amine detection.…”
    Get full text
    Article
  8. 548
  9. 549

    Evaluation of a coastal acoustic buoy for cetacean detections, bearing accuracy and exclusion zone monitoring by Kaitlin J. Palmer, Sam Tabbutt, Douglas Gillespie, Jesse Turner, Paul King, Dominic Tollit, Jessica Thompson, Jason Wood

    Published 2022-11-01
    “…Field trials indicated maximum detection ranges from 4–7.3 km depending on source and ambient noise levels. …”
    Get full text
    Article
  10. 550

    Enhanced Intrusion Detection in In-Vehicle Networks Using Advanced Feature Fusion and Stacking-Enriched Learning by Ali Altalbe

    Published 2024-01-01
    “…To address this problem, machine learning (ML) based intrusion detection systems (IDSs) have been proposed. However, existing IDSs suffer from low detection accuracy, limited real-time response, and high resource requirements. …”
    Get full text
    Article
  11. 551

    Securing Industrial IoT Environments: A Fuzzy Graph Attention Network for Robust Intrusion Detection by Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa

    Published 2025-01-01
    “…The Industrial Internet of Things (IIoT) faces significant cybersecurity threats due to its ever-changing network structures, diverse data sources, and inherent uncertainties, making robust intrusion detection crucial. …”
    Get full text
    Article
  12. 552

    F-OSFA: A Fog Level Generalizable Solution for Zero-Day DDOS Attacks Detection by Muhammad Rashid Minhas, Qaisar M. Shafi, Shoab Ahmed Khan, Tahir Ahmad, Subhan Ullah, Attaullah Buriro, Muhammad Azfar Yaqub

    Published 2025-01-01
    “…The third component is a signature-based resource usage analyzer to counter attacks mimicking normal traffic. …”
    Get full text
    Article
  13. 553

    LMGD: Log-Metric Combined Microservice Anomaly Detection Through Graph-Based Deep Learning by Xu Liu, Yuewen Liu, Miaomiao Wei, Peng Xu

    Published 2024-01-01
    “…Therefore, there is an urgent need for fast and accurate anomaly detection capabilities. However, the existing microservice anomaly detection methods do not pay attention to the multi-source data of the microservice system and thus have low accuracy. …”
    Get full text
    Article
  14. 554

    DECISION TREE WITH HILL CLIMBING ALGORITHM BASED SPECTRUM HOLE DETECTION IN COGNITIVE RADIO NETWORK by N Suganthi, R Meenakshi, A Sairam, M Parvathi

    Published 2025-06-01
    “…The approach integrates a Decision Tree (DT) algorithm for rapid initial classification of Primary User (PU) activity, followed by a Hill Climbing (HC) optimization algorithm that fine-tunes the detection based on a fitness function. Entropy and throughput metrics are employed as decision conditions at each sensing channel, enhancing uncertainty measurement and maintaining detection robustness under low Signal-to-Noise Ratio (SNR) conditions. …”
    Get full text
    Article
  15. 555

    CSW-YOLO: A traffic sign small target detection algorithm based on YOLOv8. by Qian Shen, Yi Li, YuXiang Zhang, Lei Zhang, ShiHao Liu, Jinhua Wu

    Published 2025-01-01
    “…First, the bottleneck of the C2f module in the original yolov8 network is replaced with the residual Faster-Block module in FasterNet, and then the new channel mixer convolution GLU (CGLU) in TransNeXt is combined with it to construct the C2f-faster-CGLU module, reducing the number of model parameters and computational load; Secondly, the SPPF module is combined with the large separable kernel attention (LSKA) to construct the SPPF-LSKA module, which greatly enhances the feature extraction ability of the model; Then, by adding a small target detection layer, the accuracy of small target detection such as traffic signs is greatly improved; Finally, the Inner-IoU and MPDIoU loss functions are integrated to construct WISE-Inner-MPDIoU, which replaces the original CIoU loss function, thereby improving the calculation accuracy. …”
    Get full text
    Article
  16. 556
  17. 557

    TCE-YOLOv5: Lightweight Automatic Driving Object Detection Algorithm Based on YOLOv5 by Han Wang, Zhenwei Yang, Qiaoshou Liu, Qiang Zhang, Honggang Wang

    Published 2025-05-01
    “…Finally, the EIOU loss function is introduced to measure the overlap between the predicted box and the real box more accurately and improve the detection accuracy. …”
    Get full text
    Article
  18. 558

    VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes by Yunxiang Liu, Yuqing Shi

    Published 2025-01-01
    “…Accurate detection of vulnerable road users (VRUs) is critical for enhancing traffic safety and advancing autonomous driving systems. …”
    Get full text
    Article
  19. 559

    YOLOv8n-DDSW: an efficient fish target detection network for dense underwater scenes by Jinwang Yi, Wei Han, Fangfei Lai

    Published 2025-04-01
    “…Therefore, the YOLOv8n-DDSW fish target detection algorithm was proposed in this article to resolve the detection difficulties resulting from fish occlusion, deformation and detail loss in complex intensive aquaculture scenarios. (1) The C2f-deformable convolutional network (DCN) module is proposed to take the place of the C2f module in the YOLOv8n backbone to raise the detection accuracy of irregular fish targets. (2) The dual-pooling squeeze-and-excitation (DPSE) attention mechanism is put forward and integrated into the YOLOv8n neck network to reinforce the features of the visible parts of the occluded fish target. (3) Small detection is introduced to make the network more capable of sensing small targets and improving recall. (4) Wise intersection over union (IOU) rather than the original loss function is used for improving the bounding box regression performance of the network. …”
    Get full text
    Article
  20. 560

    Smart Fault Detection, Classification, and Localization in Distribution Networks: AI-Driven Approaches and Emerging Technologies by Jianxian Wang, Hazlie Mokhlis, Nurulafiqah Nadzirah Mansor, Hazlee Azil Illias, Agileswari K. Ramasamy, Xingyu Wu, Siqi Wang

    Published 2025-01-01
    “…However, with nations worldwide actively pursuing carbon neutrality and emission peak goals, sustainable energy sources such as solar and wind are increasingly penetrating distribution networks, posing significant challenges to conventional fault detection, classification, and localization techniques due to bidirectional power flows, dynamic fault currents, and rising network complexity. …”
    Get full text
    Article