Search alternatives:
resource » source (Expand Search)
sourcess » source (Expand Search), success (Expand Search)
Showing 401 - 420 results of 1,810 for search '((( resource OR sourcess) detection function ) OR ( sources detection function ))', query time: 0.30s Refine Results
  1. 401

    Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms by Roberta Puglisi, Caterina Testa, Sara Scuderi, Valentina Greco, Giuseppe Trusso Sfrazzetto, Manuel Petroselli, Andrea Pappalardo

    Published 2024-12-01
    “…Fluorescence titrations and density functional theory (DFT) calculations reveal and explain the high binding affinity of this receptor toward selected amines, demonstrating its potential as an effective tool for amine detection.…”
    Get full text
    Article
  2. 402

    Evaluation of a coastal acoustic buoy for cetacean detections, bearing accuracy and exclusion zone monitoring by Kaitlin J. Palmer, Sam Tabbutt, Douglas Gillespie, Jesse Turner, Paul King, Dominic Tollit, Jessica Thompson, Jason Wood

    Published 2022-11-01
    “…Field trials indicated maximum detection ranges from 4–7.3 km depending on source and ambient noise levels. …”
    Get full text
    Article
  3. 403

    Enhanced Intrusion Detection in In-Vehicle Networks Using Advanced Feature Fusion and Stacking-Enriched Learning by Ali Altalbe

    Published 2024-01-01
    “…To address this problem, machine learning (ML) based intrusion detection systems (IDSs) have been proposed. However, existing IDSs suffer from low detection accuracy, limited real-time response, and high resource requirements. …”
    Get full text
    Article
  4. 404

    Acoustic Emission as a Method for Analyzing Changes and Detecting Damage in Composite Materials During Loading by Katarzyna PANASIUK, Krzysztof DUDZIK, Grzegorz HAJDUKIEWICZ

    Published 2021-08-01
    “…The signal obtained from the sensor was then further processed and used to draw up diagrams of the AE hits, amplitude, root mean square of the AE source signal (RMS) and duration in the function of time. …”
    Get full text
    Article
  5. 405

    Securing Industrial IoT Environments: A Fuzzy Graph Attention Network for Robust Intrusion Detection by Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa

    Published 2025-01-01
    “…The Industrial Internet of Things (IIoT) faces significant cybersecurity threats due to its ever-changing network structures, diverse data sources, and inherent uncertainties, making robust intrusion detection crucial. …”
    Get full text
    Article
  6. 406

    F-OSFA: A Fog Level Generalizable Solution for Zero-Day DDOS Attacks Detection by Muhammad Rashid Minhas, Qaisar M. Shafi, Shoab Ahmed Khan, Tahir Ahmad, Subhan Ullah, Attaullah Buriro, Muhammad Azfar Yaqub

    Published 2025-01-01
    “…The third component is a signature-based resource usage analyzer to counter attacks mimicking normal traffic. …”
    Get full text
    Article
  7. 407
  8. 408

    LMGD: Log-Metric Combined Microservice Anomaly Detection Through Graph-Based Deep Learning by Xu Liu, Yuewen Liu, Miaomiao Wei, Peng Xu

    Published 2024-01-01
    “…Therefore, there is an urgent need for fast and accurate anomaly detection capabilities. However, the existing microservice anomaly detection methods do not pay attention to the multi-source data of the microservice system and thus have low accuracy. …”
    Get full text
    Article
  9. 409

    DECISION TREE WITH HILL CLIMBING ALGORITHM BASED SPECTRUM HOLE DETECTION IN COGNITIVE RADIO NETWORK by N Suganthi, R Meenakshi, A Sairam, M Parvathi

    Published 2025-06-01
    “…The approach integrates a Decision Tree (DT) algorithm for rapid initial classification of Primary User (PU) activity, followed by a Hill Climbing (HC) optimization algorithm that fine-tunes the detection based on a fitness function. Entropy and throughput metrics are employed as decision conditions at each sensing channel, enhancing uncertainty measurement and maintaining detection robustness under low Signal-to-Noise Ratio (SNR) conditions. …”
    Get full text
    Article
  10. 410

    CSW-YOLO: A traffic sign small target detection algorithm based on YOLOv8. by Qian Shen, Yi Li, YuXiang Zhang, Lei Zhang, ShiHao Liu, Jinhua Wu

    Published 2025-01-01
    “…First, the bottleneck of the C2f module in the original yolov8 network is replaced with the residual Faster-Block module in FasterNet, and then the new channel mixer convolution GLU (CGLU) in TransNeXt is combined with it to construct the C2f-faster-CGLU module, reducing the number of model parameters and computational load; Secondly, the SPPF module is combined with the large separable kernel attention (LSKA) to construct the SPPF-LSKA module, which greatly enhances the feature extraction ability of the model; Then, by adding a small target detection layer, the accuracy of small target detection such as traffic signs is greatly improved; Finally, the Inner-IoU and MPDIoU loss functions are integrated to construct WISE-Inner-MPDIoU, which replaces the original CIoU loss function, thereby improving the calculation accuracy. …”
    Get full text
    Article
  11. 411
  12. 412

    TCE-YOLOv5: Lightweight Automatic Driving Object Detection Algorithm Based on YOLOv5 by Han Wang, Zhenwei Yang, Qiaoshou Liu, Qiang Zhang, Honggang Wang

    Published 2025-05-01
    “…Finally, the EIOU loss function is introduced to measure the overlap between the predicted box and the real box more accurately and improve the detection accuracy. …”
    Get full text
    Article
  13. 413

    VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes by Yunxiang Liu, Yuqing Shi

    Published 2025-01-01
    “…Accurate detection of vulnerable road users (VRUs) is critical for enhancing traffic safety and advancing autonomous driving systems. …”
    Get full text
    Article
  14. 414

    YOLOv8n-DDSW: an efficient fish target detection network for dense underwater scenes by Jinwang Yi, Wei Han, Fangfei Lai

    Published 2025-04-01
    “…Therefore, the YOLOv8n-DDSW fish target detection algorithm was proposed in this article to resolve the detection difficulties resulting from fish occlusion, deformation and detail loss in complex intensive aquaculture scenarios. (1) The C2f-deformable convolutional network (DCN) module is proposed to take the place of the C2f module in the YOLOv8n backbone to raise the detection accuracy of irregular fish targets. (2) The dual-pooling squeeze-and-excitation (DPSE) attention mechanism is put forward and integrated into the YOLOv8n neck network to reinforce the features of the visible parts of the occluded fish target. (3) Small detection is introduced to make the network more capable of sensing small targets and improving recall. (4) Wise intersection over union (IOU) rather than the original loss function is used for improving the bounding box regression performance of the network. …”
    Get full text
    Article
  15. 415

    Smart Fault Detection, Classification, and Localization in Distribution Networks: AI-Driven Approaches and Emerging Technologies by Jianxian Wang, Hazlie Mokhlis, Nurulafiqah Nadzirah Mansor, Hazlee Azil Illias, Agileswari K. Ramasamy, Xingyu Wu, Siqi Wang

    Published 2025-01-01
    “…However, with nations worldwide actively pursuing carbon neutrality and emission peak goals, sustainable energy sources such as solar and wind are increasingly penetrating distribution networks, posing significant challenges to conventional fault detection, classification, and localization techniques due to bidirectional power flows, dynamic fault currents, and rising network complexity. …”
    Get full text
    Article
  16. 416
  17. 417
  18. 418
  19. 419
  20. 420