Search alternatives:
resource » resources (Expand Search)
resources » resourcess (Expand Search)
source » sources (Expand Search)
Showing 321 - 340 results of 1,810 for search '((( resource OR resources) detection function ) OR ( source detection function ))', query time: 0.34s Refine Results
  1. 321
  2. 322

    Automatic detection of floating instream large wood in videos using deep learning by J. Aarnink, J. Aarnink, T. Beucler, T. Beucler, M. Vuaridel, V. Ruiz-Villanueva, V. Ruiz-Villanueva

    Published 2025-02-01
    “…Therefore, the findings of this paper could be used when designing a custom wood detection network. With the growing availability of flood-related videos featuring wood uploaded to the internet, this methodology facilitates the quantification of wood transport across a wide variety of data sources.…”
    Get full text
    Article
  3. 323

    Automatic Recognition of Authors Identity in Persian based on Systemic Functional Grammar by Fatemeh Soltanzadeh, Azadeh Mirzaei, Mohammad Bahrani, Shahram Modarres Khiabani

    Published 2024-09-01
    “…First, a corpus composed of documents written by seven contemporary Iranian authors was collected. Second, a list of function words was extracted from the corpus. Moreover, conjunction, modality and comment adjunct system networks were applied to form a lexicon using linguistics resources. …”
    Get full text
    Article
  4. 324

    Near-source wastewater surveillance of SARS-CoV-2, norovirus, influenza virus and RSV across five different sites in the UK. by Jay C Bullen, Mina Mohaghegh, Fatima Tahir, Charlotte Hammer, Jacob Sims, Frederico Myers, Lucas Eisinger, Ali Reza Kasmati, Claire F Trant

    Published 2025-01-01
    “…The key findings are (1) near-source wastewater detections were linked to local events (staff sickness, enhanced cleaning, changing populations); (2) wastewater detections decreased in the order norovirus GII > norovirus GI > SARS-CoV-2 ≈ influenza A ≈ RSV A > influenza B ≈ RSV B; (3) correlation between near-source wastewater data and national surveillance data increases as a function of catchment size and viral prevalence (examples include the SARS-CoV-2 BA.4/BA.5 variant peak at a museum and wastewater tracking the winter norovirus season); (4) strong weekday periodicity in near-source wastewater SARS-CoV-2 detections, with the correlation against COVID-19 case numbers increasing when modelling variable lag times between faecal shedding onset and clinical diagnosis (R2 = 0.45 increases to 0.84-0.86); (5) a log-linear relationship between the frequency of wastewater SARS-CoV-2 detection and log(catchment size⋅viral prevalence) (R2 = 0.6914-0.9066). …”
    Get full text
    Article
  5. 325

    Three-Dimensional Real-Scene-Enhanced GNSS/Intelligent Vision Surface Deformation Monitoring System by Yuanrong He, Weijie Yang, Qun Su, Qiuhua He, Hongxin Li, Shuhang Lin, Shaochang Zhu

    Published 2025-04-01
    “…The system integrates GNSS monitoring terminals and multi-source meteorological sensors to accurately capture minute displacements at monitoring points and multi-source Internet of Things (IoT) data, which are then automatically stored in MySQL databases. …”
    Get full text
    Article
  6. 326

    Effect of cochlear implant surgery on vestibular function: meta-analysis study by Iman Ibrahim, Sabrina Daniela da Silva, Bernard Segal, Anthony Zeitouni

    Published 2017-06-01
    “…No significant effect of CI surgery was detected in HIT, posturography, or DHI scores. Overall, the clinical effect of CI surgery on the vestibular function was found to be insignificant. …”
    Get full text
    Article
  7. 327

    Lightweight and Accurate YOLOv7-Based Ensembles With Knowledge Distillation for Urinary Sediment Detection by Keita Sasaki, Hiroki Nishikawa, Ittetsu Taniguchi, Takao Onoye

    Published 2025-01-01
    “…Urine sediment analysis plays an important role in evaluating kidney function. In addition to improving detection accuracy, reducing model size is also a key challenge, especially when considering deployment on medical devices where computational resources are limited. …”
    Get full text
    Article
  8. 328

    A spatial matrix factorization method to characterize ecological assemblages as a mixture of unobserved sources: An application to fish eDNA surveys by Letizia Lamperti, Olivier François, David Mouillot, Laëtitia Mathon, Théophile Sanchez, Camille Albouy, Loïc Pellissier, Stéphanie Manel

    Published 2024-12-01
    “…Abstract Understanding how ecological assemblages vary in space and time is essential for advancing our knowledge of biodiversity dynamics and ecosystem functioning. Metabarcoding of environmental DNA (eDNA) is an efficient method for documenting biodiversity changes in both marine and terrestrial ecosystems. …”
    Get full text
    Article
  9. 329

    Surface Defect Detection for Small Samples of Particleboard Based on Improved Proximal Policy Optimization by Haifei Xia, Haiyan Zhou, Mingao Zhang, Qingyi Zhang, Chenlong Fan, Yutu Yang, Shuang Xi, Ying Liu

    Published 2025-04-01
    “…The method integrates the variable action space and the composite reward function and achieves the balanced optimization of different types of defect detection performance by adjusting the scaling and translation amplitude of the detection region. …”
    Get full text
    Article
  10. 330
  11. 331

    DP-YOLO: A Lightweight Real-Time Detection Algorithm for Rail Fastener Defects by Lihua Chen, Qi Sun, Ziyang Han, Fengwen Zhai

    Published 2025-03-01
    “…To enable accurate and efficient real-time detection of rail fastener defects under resource-constrained environments, we propose DP-YOLO, an advanced lightweight algorithm based on YOLOv5s with four key optimizations. …”
    Get full text
    Article
  12. 332

    Deep learning vulnerability detection method based on optimized inter-procedural semantics of programs by Yan LI, Weizhong QIANG, Zhen LI, Deqing ZOU, Hai JIN

    Published 2023-12-01
    “…In recent years, software vulnerabilities have been causing a multitude of security incidents, and the early discovery and patching of vulnerabilities can effectively reduce losses.Traditional rule-based vulnerability detection methods, relying upon rules defined by experts, suffer from a high false negative rate.Deep learning-based methods have the capability to automatically learn potential features of vulnerable programs.However, as software complexity increases, the precision of these methods decreases.On one hand, current methods mostly operate at the function level, thus unable to handle inter-procedural vulnerability samples.On the other hand, models such as BGRU and BLSTM exhibit performance degradation when confronted with long input sequences, and are not adept at capturing long-term dependencies in program statements.To address the aforementioned issues, the existing program slicing method has been optimized, enabling a comprehensive contextual analysis of vulnerabilities triggered across functions through the combination of intra-procedural and inter-procedural slicing.This facilitated the capture of the complete causal relationship of vulnerability triggers.Furthermore, a vulnerability detection task was conducted using a Transformer neural network architecture equipped with a multi-head attention mechanism.This architecture collectively focused on information from different representation subspaces, allowing for the extraction of deep features from nodes.Unlike recurrent neural networks, this approach resolved the issue of information decay and effectively learned the syntax and semantic information of the source program.Experimental results demonstrate that this method achieves an F1 score of 73.4% on a real software dataset.Compared to the comparative methods, it shows an improvement of 13.6% to 40.8%.Furthermore, it successfully detects several vulnerabilities in open-source software, confirming its effectiveness and applicability.…”
    Get full text
    Article
  13. 333

    MSSA: multi-stage semantic-aware neural network for binary code similarity detection by Bangrui Wan, Jianjun Zhou, Ying Wang, Feng Chen, Ying Qian

    Published 2025-01-01
    “…Binary code similarity detection (BCSD) aims to identify whether a pair of binary code snippets is similar, which is widely used for tasks such as malware analysis, patch analysis, and clone detection. …”
    Get full text
    Article
  14. 334

    A lightweight algorithm for steel surface defect detection using improved YOLOv8 by Shuangbao Ma, Xin Zhao, Li Wan, Yapeng Zhang, Hongliang Gao

    Published 2025-03-01
    “…Finally, the SIoU (Simplified IoU ) is used to replace the traditional CIoU loss function, which can make the anchor frame more fast and accurate in the regression process, to improve the stability and the robustness of detection. …”
    Get full text
    Article
  15. 335
  16. 336

    App-DDoS detection method using partial binary tree based SVM algorithm by Bin ZHANG, Zihao LIU, Shuqin DONG, Lixun LI

    Published 2018-03-01
    “…As it ignored the detection of ramp-up and pulsing type of application layer DDoS (App-DDoS) attacks in existing flow-based App-DDoS detection methods,an effective detection method for multi-type App-DDoS was proposed.Firstly,in order to fast count the number of HTTP GET for users and further support the calculation of feature parameters applied in detection method,the indexes of source IP address in multiple time windows were constructed by the approach of Hash function.Then the feature parameters by combining SVM classifiers with the structure of partial binary tree were trained hierarchically,and the App-DDoS detection method was proposed with the idea of traversing binary tree and feedback learning to distinguish non-burst normal flow,burst normal flow and multi-type App-DDoS flows.The experimental results show that compared with the conventional SVM-based and naïve-Bayes-based detection methods,the proposed method has more excellent detection performance and can distinguish specific App-DDoS types through subdividing attack types and training detection model layer by layer.…”
    Get full text
    Article
  17. 337

    SurfaceVision: An Automated Module for Surface Fault Detection in 3D Printed Products by Laukesh Kumar, Manoj Kumar Satyarthi

    Published 2025-01-01
    “…The traditional method currently requires visual information processing devices or continuous monitoring of the process via a camera, which is very resource consuming and costly. Machine learning techniques being used for automatic detection of the faults suffer in real time conditions with inefficient fault detection due to the inability of adaptation to real time changes in the printing process. …”
    Get full text
    Article
  18. 338

    FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image by Siyuan Zhao, Yong Kang, Hang Yuan, Guan Wang, Hui Wang, Shichao Xiong, Ying Luo

    Published 2025-06-01
    “…Heterogeneous Synthetic Aperture Radar (SAR) image object detection task with inconsistent joint probability distributions is occurring more and more frequently in practical applications. …”
    Get full text
    Article
  19. 339

    A Lightweight Network for UAV Multi-Scale Feature Fusion-Based Object Detection by Sheng Deng, Yaping Wan

    Published 2025-03-01
    “…To tackle the issues of small target sizes, missed detections, and false alarms in aerial drone imagery, alongside the constraints posed by limited hardware resources during model deployment, a streamlined object detection approach is proposed to enhance the performance of YOLOv8s. …”
    Get full text
    Article
  20. 340

    Research on a UAV-View Object-Detection Method Based on YOLOv7-Tiny by Yuyang Miao, Xihan Wang, Ning Zhang, Kai Wang, Lianhe Shao, Quanli Gao

    Published 2024-12-01
    “…These enhancements collectively enable the model to balance high detection accuracy and computational efficiency, making it well-suited for resource-constrained UAV platforms. …”
    Get full text
    Article