-
341
A spatial matrix factorization method to characterize ecological assemblages as a mixture of unobserved sources: An application to fish eDNA surveys
Published 2024-12-01“…We present a spatial matrix factorization method that identifies optimal eDNA sample assemblages—called pools—assuming that taxonomic unit composition is based on a fixed number of unknown sources. These sources, in turn, represent taxonomic units sharing similar habitat properties or characteristics. …”
Get full text
Article -
342
Employing SAE-GRU deep learning for scalable botnet detection in smart city infrastructure
Published 2025-04-01“…These findings enhance the understanding of IoT security by offering a scalable and resource-efficient solution for botnet detection. The functional investigation establishes a foundation for future research into adaptive security mechanisms that address emerging threats and highlights the practical potential of advanced deep learning techniques in safeguarding next-generation smart city ecosystems.…”
Get full text
Article -
343
A lightweight algorithm for steel surface defect detection using improved YOLOv8
Published 2025-03-01“…Finally, the SIoU (Simplified IoU ) is used to replace the traditional CIoU loss function, which can make the anchor frame more fast and accurate in the regression process, to improve the stability and the robustness of detection. …”
Get full text
Article -
344
SurfaceVision: An Automated Module for Surface Fault Detection in 3D Printed Products
Published 2025-01-01“…The traditional method currently requires visual information processing devices or continuous monitoring of the process via a camera, which is very resource consuming and costly. Machine learning techniques being used for automatic detection of the faults suffer in real time conditions with inefficient fault detection due to the inability of adaptation to real time changes in the printing process. …”
Get full text
Article -
345
Lightweight and Accurate YOLOv7-Based Ensembles With Knowledge Distillation for Urinary Sediment Detection
Published 2025-01-01“…Urine sediment analysis plays an important role in evaluating kidney function. In addition to improving detection accuracy, reducing model size is also a key challenge, especially when considering deployment on medical devices where computational resources are limited. …”
Get full text
Article -
346
GESC-YOLO: Improved Lightweight Printed Circuit Board Defect Detection Based Algorithm
Published 2025-05-01“…Simultaneously, the model size is reduced by 25.4%, the parameter count is cut down by 28.6%, and the computational resource consumption is reduced by 26.8%. This successfully achieves the harmonization of detection precision and model lightweighting.…”
Get full text
Article -
347
Research on a UAV-View Object-Detection Method Based on YOLOv7-Tiny
Published 2024-12-01“…The algorithm’s performance in handling object occlusion and multi-scale detection is enhanced by introducing the VarifocalLoss loss function and improving the feature fusion network to BiFPN. …”
Get full text
Article -
348
A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites
Published 2025-03-01“…This method compensates for the range difference rather than the target range. In the detection period, we develop two weighting functions, i.e., the Doppler frequency rate (DFR) variance function and smooth spatial filtering function, to extract prominent areas and make efficient detection, respectively. …”
Get full text
Article -
349
RSWD-YOLO: A Walnut Detection Method Based on UAV Remote Sensing Images
Published 2025-04-01“…Furthermore, to optimize the detection performance under hardware resource constraints, we apply knowledge distillation to RSWD-YOLO, thereby further improving the detection accuracy. …”
Get full text
Article -
350
Quantifying the spatial impact of an invasive Acacia on ecosystem functioning using remote sensing
Published 2025-01-01Get full text
Article -
351
Automatic Detection and Identification of Underdense Meteors Based on YOLOv8n-BP Model
Published 2025-04-01“…Utilizing the Fresnel oscillation properties of meteor echoes, a BP network based on a Gaussian activation function is designed in this paper to enable it to detect meteor head and tail positions more accurately. …”
Get full text
Article -
352
Yarn-electrospun PVDF-HFP/CNC smart textiles for self-powered sensor in wearable electronics
Published 2025-04-01“…The success of developing such sensor-integrated touchscreen gloves paves new avenues for human-technology interactions, highlights the dual functionality of these yarns as power sources and sensors, and represents a milestone in broadening the applications of wearable technologies.…”
Get full text
Article -
353
Rapid Spectral Evolution of SGR 1935+2154 during Its 2022 Outburst
Published 2025-01-01Get full text
Article -
354
Automatic detection of human gait events: a simple but versatile 3D algorithm
Published 2025-05-01Get full text
Article -
355
-
356
Characteristics of soil microbial phospholipid fatty acids in artificial, black-soil mountain degraded, and natural grasslands in the source region of the Three Rivers
Published 2025-08-01“…Background The source region of the Three Rivers is a concentrated distribution area of alpine grassland. …”
Get full text
Article -
357
YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles
Published 2025-07-01“…Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. …”
Get full text
Article -
358
DETECTIVE STORY: TO THE PROBLEM OF VARIABILITY OF THE MAIN EVENT AND CHARACTERS (BY THE CASE OF A. SARAKHOV’S STORIES)
Published 2019-06-01“…The functionality of stereotypes of perception and «memory of the genre» is briefly presented, which manifests itself in the history of understanding a domestic detective story as a constant appeal to the foreign sources of the genre. …”
Get full text
Article -
359
Bio-Inspired Object Detection and Tracking in Aerial Images: Harnessing Northern Goshawk Optimization
Published 2024-01-01Get full text
Article -
360
Deep learning vulnerability detection method based on optimized inter-procedural semantics of programs
Published 2023-12-01“…In recent years, software vulnerabilities have been causing a multitude of security incidents, and the early discovery and patching of vulnerabilities can effectively reduce losses.Traditional rule-based vulnerability detection methods, relying upon rules defined by experts, suffer from a high false negative rate.Deep learning-based methods have the capability to automatically learn potential features of vulnerable programs.However, as software complexity increases, the precision of these methods decreases.On one hand, current methods mostly operate at the function level, thus unable to handle inter-procedural vulnerability samples.On the other hand, models such as BGRU and BLSTM exhibit performance degradation when confronted with long input sequences, and are not adept at capturing long-term dependencies in program statements.To address the aforementioned issues, the existing program slicing method has been optimized, enabling a comprehensive contextual analysis of vulnerabilities triggered across functions through the combination of intra-procedural and inter-procedural slicing.This facilitated the capture of the complete causal relationship of vulnerability triggers.Furthermore, a vulnerability detection task was conducted using a Transformer neural network architecture equipped with a multi-head attention mechanism.This architecture collectively focused on information from different representation subspaces, allowing for the extraction of deep features from nodes.Unlike recurrent neural networks, this approach resolved the issue of information decay and effectively learned the syntax and semantic information of the source program.Experimental results demonstrate that this method achieves an F1 score of 73.4% on a real software dataset.Compared to the comparative methods, it shows an improvement of 13.6% to 40.8%.Furthermore, it successfully detects several vulnerabilities in open-source software, confirming its effectiveness and applicability.…”
Get full text
Article