-
21
A comprehensive machine learning-based models for predicting mixture toxicity of azole fungicides toward algae (Auxenochlorella pyrenoidosa)
Published 2024-12-01“…To address this gap, the application of machine learning (ML) algorithms has emerged as an effective strategy. In this study, we applied 12 algorithms, namely, k-nearest neighbor (KNN), kernel k-nearest neighbors (KKNN), support vector machine (SVM), random forest (RF), stochastic gradient boosting (GBM), cubist, bagged multivariate adaptive regression splines (Bagged MARS), eXtreme gradient boosting (XGBoost), boosted generalized linear model (GLMBoost), boosted generalized additive model (GAMBoost), bayesian regularized neural networks (BRNN), and recursive partitioning and regression trees (CART) to build ML models for 225 mixture toxicity of azole fungicides towards Auxenochlorella pyrenoidosa. …”
Get full text
Article -
22
Application of Machine Learning Techniques to Classify Twitter Sentiments Using Vectorization Techniques
Published 2024-10-01Get full text
Article -
23
Enhanced Viral Genome Classification Using Large Language Models
Published 2025-05-01“…Among these are traditional algorithms such as Random Forest (RF), K-nearest neighbors (KNNs), Decision Tree (DT), and Naive Bayes (NB), each offering unique advantages in handling genetic data. …”
Get full text
Article -
24
Finding high posterior density phylogenies by systematically extending a directed acyclic graph
Published 2025-02-01Get full text
Article -
25
-
26
Comparison of machine learning models for coronavirus prediction
Published 2022-03-01Get full text
Article -
27
Machine learning based classification of catastrophic health expenditures: a cross-sectional study of Korean low-income households
Published 2025-08-01“…The classification model was developed using four machine learning algorithms: Random Forest, Gradient boosting, Decision tree, Ridge regression, Neural network, and AdaBoost. …”
Get full text
Article -
28
-
29
Learning Optimal Dynamic Treatment Regime from Observational Clinical Data through Reinforcement Learning
Published 2024-07-01“…Our study aims to evaluate the performance and feasibility of such algorithms: tree-based reinforcement learning (T-RL), DTR-Causal Tree (DTR-CT), DTR-Causal Forest (DTR-CF), stochastic tree-based reinforcement learning (SL-RL), and Q-learning with Random Forest. …”
Get full text
Article -
30
Predicting Livestock Farmers’ Attitudes towards Improved Sheep Breeds in Ahar City through Data Mining Methods
Published 2024-10-01“…Next, we employed data mining-based methods, including multilayer perceptron neural networks, random forest, and random tree algorithms. These helped identify essential variables affecting ranchers’ attitudes. …”
Get full text
Article -
31
Modeling Flood Susceptibility Utilizing Advanced Ensemble Machine Learning Techniques in the Marand Plain
Published 2025-03-01“…In this case study, flood susceptibility patterns in the Marand Plain, located in the East Azerbaijan Province in northwest Iran, were analyzed using five machine learning (ML) algorithms: M5P model tree, Random SubSpace (RSS), Random Forest (RF), Bagging, and Locally Weighted Linear (LWL). …”
Get full text
Article -
32
-
33
Sysmon event logs for machine learning-based malware detection
Published 2025-12-01Get full text
Article -
34
An integrated machine learning and fractional calculus approach to predicting diabetes risk in women
Published 2025-12-01Get full text
Article -
35
Impact of climate change over distribution and potential range of chestnut in the Iberian Peninsula
Published 2025-02-01Get full text
Article -
36
-
37
Investigating the contributory factors influencing speeding behavior among long-haul truck drivers traveling across India: Insights from binary logit and machine learning technique...
Published 2024-12-01“…While conventional statistical methods like binary logit technique lacked prediction capabilities, machine learning (ML) algorithms including decision tree (DT), random forest (RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost) were employed to model speeding behavior among LHTDs. …”
Get full text
Article -
38
Early Detection of Parkinson's Disease: Ensemble Learning for Improved Diagnosis
Published 2025-01-01“…This paper proposed several machine learning algorithms such as Decision Tree, Random Forest, Logistic Regression and Support Vector Machine and design an ensemble of these models to detect and classify Parkinson's disease. …”
Get full text
Article -
39
Advancing malware imagery classification with explainable deep learning: A state-of-the-art approach using SHAP, LIME and Grad-CAM.
Published 2025-01-01“…The trust of users in the models used for cybersecurity would be undermined by the ambiguous and indefinable nature of existing AI-based methods, specifically in light of the more complicated and diverse nature of cyberattacks in modern times. The present research addresses the comparative analysis of an ensemble deep neural network (DNNW) with different ensemble techniques like RUSBoost, Random Forest, Subspace, AdaBoost, and BagTree for the best prediction against imagery malware data. …”
Get full text
Article -
40
Fault Detection in Photovoltaic Systems Using a Machine Learning Approach
Published 2025-01-01“…The proposed fault detection solutions rely on analyzing different algorithms, including Support Vector Machine, Artificial Neural Network, Random Forest, Decision Tree, and Logistic Regression. …”
Get full text
Article