Search alternatives:
east research » pain research (Expand Search)
tree » three (Expand Search)
Showing 21 - 40 results of 55 for search '((( fact OR face) research random tree algorithm ) OR ( east research random tree algorithm ))', query time: 0.21s Refine Results
  1. 21

    A comprehensive machine learning-based models for predicting mixture toxicity of azole fungicides toward algae (Auxenochlorella pyrenoidosa) by Li-Tang Qin, Xue-Fang Tian, Jun-Yao Zhang, Yan-Peng Liang, Hong-Hu Zeng, Ling-Yun Mo

    Published 2024-12-01
    “…To address this gap, the application of machine learning (ML) algorithms has emerged as an effective strategy. In this study, we applied 12 algorithms, namely, k-nearest neighbor (KNN), kernel k-nearest neighbors (KKNN), support vector machine (SVM), random forest (RF), stochastic gradient boosting (GBM), cubist, bagged multivariate adaptive regression splines (Bagged MARS), eXtreme gradient boosting (XGBoost), boosted generalized linear model (GLMBoost), boosted generalized additive model (GAMBoost), bayesian regularized neural networks (BRNN), and recursive partitioning and regression trees (CART) to build ML models for 225 mixture toxicity of azole fungicides towards Auxenochlorella pyrenoidosa. …”
    Get full text
    Article
  2. 22
  3. 23

    Enhanced Viral Genome Classification Using Large Language Models by Hemalatha Gunasekaran, Nesaian Reginal Wilfred Blessing, Umar Sathic, Mohammad Shahid Husain

    Published 2025-05-01
    “…Among these are traditional algorithms such as Random Forest (RF), K-nearest neighbors (KNNs), Decision Tree (DT), and Naive Bayes (NB), each offering unique advantages in handling genetic data. …”
    Get full text
    Article
  4. 24
  5. 25
  6. 26
  7. 27

    Machine learning based classification of catastrophic health expenditures: a cross-sectional study of Korean low-income households by Seok Min Ji, Jeewuan Kim, Kyu Min Kim

    Published 2025-08-01
    “…The classification model was developed using four machine learning algorithms: Random Forest, Gradient boosting, Decision tree, Ridge regression, Neural network, and AdaBoost. …”
    Get full text
    Article
  8. 28
  9. 29

    Learning Optimal Dynamic Treatment Regime from Observational Clinical Data through Reinforcement Learning by Seyum Abebe, Irene Poli, Roger D. Jones, Debora Slanzi

    Published 2024-07-01
    “…Our study aims to evaluate the performance and feasibility of such algorithms: tree-based reinforcement learning (T-RL), DTR-Causal Tree (DTR-CT), DTR-Causal Forest (DTR-CF), stochastic tree-based reinforcement learning (SL-RL), and Q-learning with Random Forest. …”
    Get full text
    Article
  10. 30

    Predicting Livestock Farmers’ Attitudes towards Improved Sheep Breeds in Ahar City through Data Mining Methods by Jabraeil Vahedi, Masoumeh Niazifar, Mohammad Ghahremanzadeh, Akbar Taghizadeh, Soheila Abachi, Valiollah Palangi, Maximilian Lackner

    Published 2024-10-01
    “…Next, we employed data mining-based methods, including multilayer perceptron neural networks, random forest, and random tree algorithms. These helped identify essential variables affecting ranchers’ attitudes. …”
    Get full text
    Article
  11. 31

    Modeling Flood Susceptibility Utilizing Advanced Ensemble Machine Learning Techniques in the Marand Plain by Ali Asghar Rostami, Mohammad Taghi Sattari, Halit Apaydin, Adam Milewski

    Published 2025-03-01
    “…In this case study, flood susceptibility patterns in the Marand Plain, located in the East Azerbaijan Province in northwest Iran, were analyzed using five machine learning (ML) algorithms: M5P model tree, Random SubSpace (RSS), Random Forest (RF), Bagging, and Locally Weighted Linear (LWL). …”
    Get full text
    Article
  12. 32
  13. 33
  14. 34
  15. 35
  16. 36
  17. 37

    Investigating the contributory factors influencing speeding behavior among long-haul truck drivers traveling across India: Insights from binary logit and machine learning technique... by Balamurugan Shandhana Rashmi, Sankaran Marisamynathan

    Published 2024-12-01
    “…While conventional statistical methods like binary logit technique lacked prediction capabilities, machine learning (ML) algorithms including decision tree (DT), random forest (RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost) were employed to model speeding behavior among LHTDs. …”
    Get full text
    Article
  18. 38

    Early Detection of Parkinson's Disease: Ensemble Learning for Improved Diagnosis by Raut Komal, Balpande Vijaya

    Published 2025-01-01
    “…This paper proposed several machine learning algorithms such as Decision Tree, Random Forest, Logistic Regression and Support Vector Machine and design an ensemble of these models to detect and classify Parkinson's disease. …”
    Get full text
    Article
  19. 39

    Advancing malware imagery classification with explainable deep learning: A state-of-the-art approach using SHAP, LIME and Grad-CAM. by Sadia Nazim, Muhammad Mansoor Alam, Syed Safdar Rizvi, Jawahir Che Mustapha, Syed Shujaa Hussain, Mazliham Mohd Suud

    Published 2025-01-01
    “…The trust of users in the models used for cybersecurity would be undermined by the ambiguous and indefinable nature of existing AI-based methods, specifically in light of the more complicated and diverse nature of cyberattacks in modern times. The present research addresses the comparative analysis of an ensemble deep neural network (DNNW) with different ensemble techniques like RUSBoost, Random Forest, Subspace, AdaBoost, and BagTree for the best prediction against imagery malware data. …”
    Get full text
    Article
  20. 40

    Fault Detection in Photovoltaic Systems Using a Machine Learning Approach by Jossias Zwirtes, Fausto Bastos Libano, Luis Alvaro de Lima Silva, and Edison Pignaton de Freitas

    Published 2025-01-01
    “…The proposed fault detection solutions rely on analyzing different algorithms, including Support Vector Machine, Artificial Neural Network, Random Forest, Decision Tree, and Logistic Regression. …”
    Get full text
    Article