Search alternatives:
main research » pain research (Expand Search)
fact » face (Expand Search)
Showing 41 - 60 results of 138 for search '((( fact OR east) research random three algorithm ) OR ( main research random tree algorithm ))', query time: 0.27s Refine Results
  1. 41

    Landslide susceptibility evaluation and determination of critical influencing factors in eastern Sichuan mountainous area, China by Lin Zhang, Zhengxi Guo, Shi Qi, Tianheng Zhao, Bingchen Wu, Peng Li

    Published 2024-12-01
    “…These factors include geological, topographic and vegetation factors, as well as four new vegetation factors: stock volume, stand density, average tree age, and stand types. Furthermore, we employed SHAP algorithm and Structural Equation Models to quantify the relative importance and explanatory power of these factors on shallow landslide susceptibility and to clarify the interaction mechanisms among various factors in Huaying Mountain. …”
    Get full text
    Article
  2. 42
  3. 43

    Applications of Multi-Robotic Arms to Assist Agricultural Production: A Review by Xiaojian Gai, Chang Xu, Yajia Liu, Qingchun Feng, Shubo Wang

    Published 2025-06-01
    “…This paper summarizes the key technologies used in current research, including heuristic algorithms, fast search rapidly exploring random trees, reinforcement learning algorithms, etc., and focuses on reviewing the present applications of cutting-edge reinforcement learning algorithms in agricultural robotic arms. …”
    Get full text
    Article
  4. 44

    A systematic mapping to investigate the application of machine learning techniques in requirement engineering activities by Shoaib Hassan, Qianmu Li, Khursheed Aurangzeb, Affan Yasin, Javed Ali Khan, Muhammad Shahid Anwar

    Published 2024-12-01
    “…The results show that the scientific community used 57 algorithms. Among those algorithms, researchers mostly used the five following ML algorithms in RE activities: Decision Tree, Support Vector Machine, Naïve Bayes, K‐nearest neighbour Classifier, and Random Forest. …”
    Get full text
    Article
  5. 45
  6. 46
  7. 47

    Enhancing Privacy in IoT Networks: A Comparative Analysis of Classification and Defense Methods by Ahmet Emre Ergun, Ozgu Can, Murat Kantarcioglu

    Published 2025-01-01
    “…Additionally, the Decision Tree (DT), Random Forest (RF), k-Nearest Neighbors (kNN), and GRU classification algorithms are also evaluated and compared with the XGBoost and LSTM classifiers for the proposed attack model. …”
    Get full text
    Article
  8. 48
  9. 49
  10. 50
  11. 51
  12. 52
  13. 53
  14. 54

    Machine Learning in the National Economy by Azamjon A. Usmonov

    Published 2025-07-01
    “…The main methods include an analysis of scientific literature, statistical data analysis, modeling using machine learning algorithms, and practical implementation of economic models with programming languages such as Python and machine learning libraries.To analyze economic data, methods such as linear regression, decision trees, and neural networks were selected, as they effectively predict changes in key macroeconomic indexes such as GDP, inflation, exchange rates, and unemployment levels. …”
    Get full text
    Article
  15. 55

    Forest canopy closure estimation in mountainous southwest China using multi-source remote sensing data by Wenwu Zhou, Wenwu Zhou, Qingtai Shu, Cuifen Xia, Li Xu, Qin Xiang, Lianjin Fu, Zhengdao Yang, Shuwei Wang

    Published 2025-08-01
    “…Then, the multi-source remote sensing image Sentinel-1/2 and terrain factors were combined to perform regional-scale FCC remote sensing estimation based on the geographically weighted regression (GWR) model. The research results showed that (1) among the 50 extracted ATLAS LiDAR feature indices, the best footprint-scale modeling factors are Landsat_perc, h_dif_canopy, asr, h_min_canopy, toc_roughness, and n_touc_photons after random forest (RF) feature variable optimization; (2) among the BO-RFR, BO-KNN, and BO-GBRT models developed at the footprint scale, the FCC results estimated by the BO-GBRT model were the best (R2 = 0.65, RMSE = 0.10, RS = 0.079, and P = 79.2%), which was used as the FCC estimation model for 74,808 footprints in the study area; (3) taking the FCC value of ATLAS footprint scale in forest land as the training sample data of the regional-scale GWR model, the model accuracy was R2 = 0.70, RMSE = 0.06, and P = 88.27%; and (4) the R² between the FCC estimates from regional-scale remote sensing and the measured values is 0.70, with a correlation coefficient of 0.784, indicating strong agreement. …”
    Get full text
    Article
  16. 56
  17. 57
  18. 58
  19. 59

    House Price Prediction of Real Time Data (DHA Defence) Karachi Using Machine Learning by Lata Bai Gokalani, Bhagwan Das, Dilip Kumar Ramnani, Mahender Kumar, Mazhar Ali Shah

    Published 2022-12-01
    “…It is one of the main contribution of the work is that through this the house prediction model based on DHA Karachi data is developed and as per best of our knowledge till today there is no prediction of housing for the country’s important has been developed. has This research paper mainly focuses on real time Defense Housing Authority (DHA) Karachi data, applying different regression algorithms like Decision tree, Random forest and linear regression to find the sales price prediction of the house and compare the performance of these models. …”
    Get full text
    Article
  20. 60