Showing 1,001 - 1,020 results of 1,420 for search '((((model OR more) OR (more OR more)) OR more) OR made) screening algorithm', query time: 0.21s Refine Results
  1. 1001

    Analysis and Validation of Autophagy-Related Gene Biomarkers and Immune Cell Infiltration Characteristic in Bronchopulmonary Dysplasia by Integrating Bioinformatics and Machine Lea... by Xiao S, Ding Y, Du C, Lv Y, Yang S, Zheng Q, Wang Z, Zheng Q, Huang M, Xiao Q, Ren Z, Bi G, Yang J

    Published 2025-01-01
    “…Subsequently, the hub genes were identified by Lasso and Cytoscape with three machine-learning algorithms (MCC, Degree and MCODE). In addition, hub genes were validated with ROC, single-cell sequence and IHC in hyperoxia mice. …”
    Get full text
    Article
  2. 1002

    Potential Metabolic Markers in the Tongue Coating of Chronic Gastritis Patients for Distinguishing Between Cold Dampness Pattern and Damp Heat Pattern in Traditional Chinese Medici... by Yuan S, Zhang R, Zhu Z, Zhou X, Zhang H, Li X, Hao Y

    Published 2025-07-01
    “…We applied metabolomics to identify differential metabolites distinguishing these patterns.Methods: In this study, the first principal component was analyzed by the OPLS-DA model. The model quality was evaluated by 7-fold cross-validation, and the model validity was evaluated based on R²Y (interpretability of categorical variable Y) and Q² (predictability of the model), and the permutation test was used for further verification. …”
    Get full text
    Article
  3. 1003

    Exploring the Ethical Challenges of Conversational AI in Mental Health Care: Scoping Review by Mehrdad Rahsepar Meadi, Tomas Sillekens, Suzanne Metselaar, Anton van Balkom, Justin Bernstein, Neeltje Batelaan

    Published 2025-02-01
    “…When a concern occurred in more than 2 articles, we identified it as a distinct theme. …”
    Get full text
    Article
  4. 1004

    Integrative machine learning and molecular simulation approaches identify GSK3β inhibitors for neurodegenerative disease therapy by Hassan H. Alhassan

    Published 2025-07-01
    “…Among all models, the Random Forest (RF) algorithm had the best prediction accuracy, with a value of 0.6832 on the test set and 0.7432 on the training set, and was employed to screen the target library of 11,032 phytochemicals. …”
    Get full text
    Article
  5. 1005

    Estimation of potato leaf area index based on spectral information and Haralick textures from UAV hyperspectral images by Jiejie Fan, Jiejie Fan, Yang Liu, Yang Liu, Yiguang Fan, Yihan Yao, Riqiang Chen, Mingbo Bian, Yanpeng Ma, Huifang Wang, Haikuan Feng, Haikuan Feng, Haikuan Feng

    Published 2024-11-01
    “…Three types of spectral data—original spectral reflectance (OSR), first-order differential spectral reflectance (FDSR), and vegetation indices (VIs)—along with three types of Haralick textures—simple, advanced, and higher-order—were analyzed for their correlation with LAI across multiple growth stages. A model for LAI estimation in potato at multiple growth stages based on spectral and textural features screened by the successive projection algorithm (SPA) was constructed using partial least squares regression (PLSR), random forest regression (RFR) and gaussian process regression (GPR) machine learning methods. …”
    Get full text
    Article
  6. 1006

    Geographic variation in secondary metabolites contents and their relationship with soil mineral elements in Pleuropterus multiflorum Thunb. from different regions by Yaling Yang, Siman Wang, Ruibin Bai, Feng Xiong, Yan Jin, Hanwei Liu, Ziyi Wang, Chengyuan Yang, Yi Yu, Apu Chowdhury, Chuanzhi Kang, Jian Yang, Lanping Guo

    Published 2024-09-01
    “…Conversely, a positive correlation was found between the contents of elements Na, Ce, Ti, and physcion and THSG-5, 2 components that exhibited higher levels in Deqing. Furthermore, an RF algorithm was employed to establish an interrelationship model, effectively forecasting the abundance of the majority of differential metabolites in HSW samples based on the content data of soil mineral elements. …”
    Get full text
    Article
  7. 1007

    Enrollment and Retention Outcomes from the Veterans Health Administration for a Remote Digital Health Study: Multisite Observational Study by Jaclyn A Pagliaro, Lauren K Wash, Ka Ly, Jenny Mathew, Alison Leibowitz, Ryan Cabrera, Jolie B Wormwood, Varsha G Vimalananda

    Published 2025-08-01
    “…ResultsOf the 7714 who were mailed a study invitation, 560 were screened. Of the screened patients, 203 were enrolled (2.9% enrollment yield) and 166 completed the study (82% retention rate). …”
    Get full text
    Article
  8. 1008

    The impact of specialised gastroenterology services for pelvic radiation disease (PRD): Results from the prospective multi-centre EAGLE study. by John N Staffurth, Stephanie Sivell, Elin Baddeley, Sam Ahmedzai, H Jervoise Andreyev, Susan Campbell, Damian J J Farnell, Catherine Ferguson, John Green, Ann Muls, Raymond O'Shea, Sara Pickett, Lesley Smith, Sophia Taylor, Annmarie Nelson

    Published 2025-01-01
    “…All men completed a validated screening tool for late bowel effects (ALERT-B) and the Gastrointestinal Symptom Rating Score (GSRS); men with a positive score on ALERT-B were offered management following a peer reviewed algorithm for pelvic radiation disease (PRD). …”
    Get full text
    Article
  9. 1009

    Research on Feature Extraction of Performance Degradation for Flexible Material R2R Processing Roller Based on PCA by Yaohua Deng, Huiqiao Zhou, Kexing Yao, Zhiqi Huang, Chengwang Guo

    Published 2020-01-01
    “…The Jacobi iteration method was introduced to derive the algorithm for solving eigenvalue and eigenvector of the covariance matrix. …”
    Get full text
    Article
  10. 1010

    A machine learning approach to predict positive coronary artery calcium scores in individuals with diabetes: a cross-sectional analysis of ELSA-Brasil baseline data by J.L. Amorim, I.M. Bensenor, A.P. Alencar, A.C. Pereira, A.C. Goulart, P.A. Lotufo, I.S. Santos

    Published 2025-08-01
    “…We analyzed 25 sociodemographic, medical history, symptom-related, and laboratory variables from 585 participants from the São Paulo investigation center with CACS data and no overt cardiovascular disease at baseline. We used six ML algorithms to build models to identify individuals with positive CACS. …”
    Get full text
    Article
  11. 1011

    GB-SAR Engineering Interference Suppression Method Integrating Amplitude-Phase Feature Analysis and Robust Regression by Wenting Zhang, Tao Lai, Yuanhui Mo, Haifeng Huang, Qingsong Wang, Zhihua Zhou

    Published 2025-01-01
    “…Subsequently, a two-stage suppression model based on robust estimation theory is developed to effectively suppress interference. …”
    Get full text
    Article
  12. 1012

    Time-Distributed Vision Transformer Stacked With Transformer for Heart Failure Detection Based on Echocardiography Video by Mgs M. Luthfi Ramadhan, Adyatma W. A. Nugraha Yudha, Muhammad Febrian Rachmadi, Kevin Moses Hanky Jr Tandayu, Lies Dina Liastuti, Wisnu Jatmiko

    Published 2024-01-01
    “…This study proposed a novel deep learning model consisting of a time-distributed vision transformer stacked with a transformer. …”
    Get full text
    Article
  13. 1013

    Cross-validation of the safe supplement screener (S3) predicting consistent third-party-tested nutritional supplement use in NCAA Division I athletes by Kinta D. Schott, Avaani Bhalla, Emma Armstrong, Ryan G. N. Seltzer, Floris C. Wardenaar

    Published 2025-01-01
    “…IntroductionThis cross-sectional study aimed to cross-validate an earlier developed algorithm-based screener and explore additional potential predictors for whether athletes will use third-party-tested (TPT) supplements.MethodsTo justify the initial model behind the supplement safety screener (S3) algorithm which predicts whether athletes will use TPT supplements, a cross-validation was performed using this independent dataset based on responses of a large group of collegiate NCAA DI athletes. …”
    Get full text
    Article
  14. 1014
  15. 1015

    Development and validation of a 3-D deep learning system for diabetic macular oedema classification on optical coherence tomography images by Mingzhi Zhang, Tsz Kin Ng, Yi Zheng, Guihua Zhang, Jian-Wei Lin, Ji Wang, Jie Ji, Peiwen Xie, Yongqun Xiong, Hanfu Wu, Cui Liu, Huishan Zhu, Jinqu Huang, Leixian Lin

    Published 2025-05-01
    “…The deep learning (DL) performance was compared with the diabetic retinopathy experts.Setting Data were collected from Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Chaozhou People’s Hospital and The Second Affiliated Hospital of Shantou University Medical College from January 2010 to December 2023.Participants 7790 volumes of 7146 eyes from 4254 patients were annotated, of which 6281 images were used as the development set and 1509 images were used as the external validation set, split based on the centres.Main outcomes Accuracy, F1-score, sensitivity, specificity, area under receiver operating characteristic curve (AUROC) and Cohen’s kappa were calculated to evaluate the performance of the DL algorithm.Results In classifying DME with non-DME, our model achieved an AUROCs of 0.990 (95% CI 0.983 to 0.996) and 0.916 (95% CI 0.902 to 0.930) for hold-out testing dataset and external validation dataset, respectively. …”
    Get full text
    Article
  16. 1016

    Exploring the role of repetitive negative thinking in the transdiagnostic context of depression and anxiety in children by Kuiliang Li, Lei Ren, Xiao Li, Chang Liu, Xuejiao Tan, Ming Ji, Xi Luo

    Published 2025-08-01
    “…Network analysis revealed that RNT’s core features exhibited the highest bridge betweenness and bridge expected influence, indicating a critical mediating role in the co-occurrence of symptoms. The random forest model showed optimal predictive performance (AUC = 0.90, recall = 0.95), supporting its applicability for early screening. …”
    Get full text
    Article
  17. 1017

    MYOPIA PREVALENCE AMONG STUDENTS DURING COVID-19 PANDEMIC. A SYSTEMATIC REVIEW AND META-ANALYSIS by Natasha Hana Savitri, Adinda Sandya Poernomo, Muhammad Bagus Fidiandra1, Eka Candra Setyawan1, Arinda Putri Auna Vanadia1, Bulqis Inas Sakinah1, Lilik Djuari

    Published 2022-12-01
    “…Data retrieval used the PICO method and journal adjustments were selected using the PRISMA algorithm. Data analysis was performed using a random-effects model. …”
    Get full text
    Article
  18. 1018
  19. 1019
  20. 1020

    Validating the recording of exacerbations of asthma in electronic health records: a systematic review protocol by Jennifer K Quint, Elizabeth Moore, Zakariah Z Gassasse

    Published 2024-11-01
    “…However, previous studies found significant heterogeneity in the algorithms used to define asthma exacerbations. Validating definitions of asthma exacerbations in EHR will lead to more robust and comparable evidence in future research.Methods and analysis Medline and Embase will be searched for the key concepts relating to asthma exacerbations, EHR and validation. …”
    Get full text
    Article