Showing 301 - 320 results of 1,436 for search '((((mode OR more) OR (model OR model)) OR model) OR made) screening algorithm', query time: 0.34s Refine Results
  1. 301

    Suicide Risk Screening in Jails: Protocol for a Pilot Study Leveraging the Mental Health Research Network Algorithm and Health Care Data by Erin B Comartin, Grant Victor, Athena Kheibari, Brian K Ahmedani, Bethany Hedden-Clayton, Richard N Jones, Ted R Miller, Jennifer E Johnson, Lauren M Weinstock, Sheryl Kubiak

    Published 2025-06-01
    “…We hypothesize that a combination of intake screening PAU and the ML model will be the optimal approach, in that the combination will be more accurate and can have practical application in this context. …”
    Get full text
    Article
  2. 302
  3. 303

    Molecular function validation and prognostic value analysis of the cuproptosis-related gene ferredoxin 1 in papillary thyroid carcinoma by Shiyue He, Wenzhong Peng, Xinyue Hu, Yong Chen

    Published 2025-07-01
    “…LASSO regression analyses were utilized to screen the optimal combination of cuproptosis-related genes for constructing a Cox proportional-hazards model, and the cuproptosis-related risk score (CRRS) was calculated to stratify PTC patients in prognosis. …”
    Get full text
    Article
  4. 304

    A risk signature constructed by Tregs-related genes predict the clinical outcomes and immune therapeutic response in kidney cancer by Gang Li, Jingmin Cui, Tao Li, Wenhan Li, Peilin Chen

    Published 2025-01-01
    “…Through the machine learning algorithm—Boruta, the potentially important KTRGs were screened further and submitted to construct a risk model. …”
    Get full text
    Article
  5. 305

    Machine learning for epithelial ovarian cancer platinum resistance recurrence identification using routine clinical data by Li-Rong Yang, Mei Yang, Liu-Lin Chen, Yong-Lin Shen, Yuan He, Zong-Ting Meng, Wan-Qi Wang, Feng Li, Zhi-Jin Liu, Lin-Hui Li, Yu-Feng Wang, Xin-Lei Luo

    Published 2024-11-01
    “…Following this screening process, five machine learning algorithms were employed to develop predictive models based on the selected variables. …”
    Get full text
    Article
  6. 306

    Development of a high-performing, cost-effective and inclusive Afrocentric predictive model for stroke: a meta-analysis approach  by M Nweke, P Oyirinnaya, P Nwoha, SB Mitha, N Mshunqane, N Govender, M Ukwuoma, SC Ibeneme

    Published 2025-07-01
    “…Conclusions Targeted screening via the CAPMS 1 and CAPMS 2 models offers a cost-effective solution for stroke screening in African clinics and communities. …”
    Get full text
    Article
  7. 307

    Analysis of vehicle and pedestrian detection effects of improved YOLOv8 model in drone-assisted urban traffic monitoring system. by Huili Dou, Sirui Chen, Fangyuan Xu, Yuanyuan Liu, Hongyang Zhao

    Published 2025-01-01
    “…The multi-scale feature fusion module enhances the model's detection ability for targets of different sizes by combining feature maps of different scales; the improved non-maximum suppression algorithm effectively reduces repeated detection and missed detection by optimizing the screening process of candidate boxes. …”
    Get full text
    Article
  8. 308
  9. 309
  10. 310

    Association between Alzheimer's disease pathologic products and age and a pathologic product-based diagnostic model for Alzheimer's disease by Weizhe Zhen, Yu Wang, Hongjun Zhen, Weihe Zhang, Wen Shao, Yu Sun, Yanan Qiao, Shuhong Jia, Zhi Zhou, Yuye Wang, Leian Chen, Jiali Zhang, Dantao Peng, Dantao Peng

    Published 2024-12-01
    “…In the non-AD group, the trend of pathologic product levels with age was consistently opposite to that of the AD group. We finally screened the optimal AD diagnostic model (AUC=0.959) based on the results of correlation analysis and by using the Xgboost algorithm and SVM algorithm.ConclusionIn a novel finding, we observed that Tau protein and Aβ had opposite trends with age in both the AD and non-AD groups. …”
    Get full text
    Article
  11. 311

    Risk Assessment of High-Voltage Power Grid Under Typhoon Disaster Based on Model-Driven and Data-Driven Methods by Xiao Zhou, Jiang Li

    Published 2025-02-01
    “…Additionally, a power grid failure risk assessment model is built based on Light Gradient Boosting Machine (LightGBM), and the Borderline-Smoothing Algorithm (BSA) is used for the modeling of power grid faults. …”
    Get full text
    Article
  12. 312

    Prognostic model of lung adenocarcinoma from the perspective of cancer-associated fibroblasts using single-cell and bulk RNA-sequencing by Jiarui Zhao, Chuanqing Jing, Rui Fan, Wei Zhang

    Published 2025-07-01
    “…Further, our inverse convolution algorithm showed that MyCAFs have prognostic potential in LUAD, and via LASSO-COX model regression, we obtained a MyCAFs-related prognostic model. …”
    Get full text
    Article
  13. 313

    Integrating machine learning models with multi-omics analysis to decipher the prognostic significance of mitotic catastrophe heterogeneity in bladder cancer by Haojie Dai, Zijie Yu, You Zhao, Ke Jiang, Zhenyu Hang, Xin Huang, Hongxiang Ma, Li Wang, Zihao Li, Ming Wu, Jun Fan, Weiping Luo, Chao Qin, Weiwen Zhou, Jun Nie

    Published 2025-04-01
    “…Subsequently by multivariate cox regression as well as survshap(t) model we screened core prognostic gene and identified it by Mendelian randomization. …”
    Get full text
    Article
  14. 314

    Exploring the association between vitamin D levels and dyslipidemia risk: insights from machine learning and generalized additive models by Yin Tianxiu, Zhang Chen, Liu Yuxiang, Zhu Xiaoyue, Hu Jingyao, Guo Haijian, Wang Bei

    Published 2025-08-01
    “…Subsequently, multiple logistic regression and a generalized additive model (GAM) were utilized to construct models analyzing the association between vitamin D levels and dyslipidemia.ResultsIn our study, the XGboost machine learning algorithm explored the relative importance of all included variables, confirming a robust association between vitamin D levels and dyslipidemia. …”
    Get full text
    Article
  15. 315

    Anti-EBV: Artificial intelligence driven predictive modeling for repurposing drugs as potential antivirals against Epstein-Barr virus by Hiteshi Vaidya, Sakshi Gautam, Manoj Kumar

    Published 2025-01-01
    “…The top-performing model was used to screen approved drugs from DrugBank, identifying potential repurposed drugs namely arzoxifene, succimer, abemaciclib and many more. …”
    Get full text
    Article
  16. 316

    Preliminary exploration and application research on the model of gathering distillate according to the quality based on Fourier transform near infrared spectroscopy by LIAO Li, ZHANG Guiyu, ZOU Yongfang, ZHU Xuemei, PENG Houbo, ZHANG Wei, LI Yan

    Published 2025-04-01
    “…The spectrum was obtained by Fourier transform near-infrared spectroscopy (FT-NIR), and the spectrum pretreatment and wavelength screening were performed, the regression prediction model was established based on the principal components, and the model of gathering distillate according to the quality was constructed by random forest (RF). …”
    Get full text
    Article
  17. 317

    Machine learning models predict risk of lower extremity deep vein thrombosis in hospitalized patients with spontaneous intracerebral hemorrhage by Weizhi Qiu, Penglei Cui, Shaojie Li, Zhenzhou Tang, Jiani Chen, Jiayin Wang, Yasong Li

    Published 2025-07-01
    “…Five machine learning algorithms were used to construct the prediction model and the model accuracy was evaluated by ROC curves. …”
    Get full text
    Article
  18. 318

    Progress and current trends in prediction models for the occurrence and prognosis of cancer and cancer-related complications: a bibliometric and visualization analysis by Siyu Li, Wenrui Li, Xiaoxiao Wang, Wanyi Chen

    Published 2025-07-01
    “…Emerging modeling techniques, such as neural networks and deep learning algorithms, are likely to play a pivotal role in current and future cancer-related prediction model research. …”
    Get full text
    Article
  19. 319

    Development of a neural network-based risk prediction model for mild cognitive impairment in older adults with functional disability by Deyan Liu, Yuge Tian, Min Liu, Shangjian Yang

    Published 2025-06-01
    “…LASSO regression, combined with univariable and multivariable logistic regression, was employed to select feature variables for predictive modeling. Seven machine learning algorithms, including logistic regression, decision tree, random forest, support vector machine, gradient boosting decision tree, k-nearest neighbors, and neural network, were used to develop predictive models. …”
    Get full text
    Article
  20. 320

    Prediction of Reactivation After Antivascular Endothelial Growth Factor Monotherapy for Retinopathy of Prematurity: Multimodal Machine Learning Model Study by Rong Wu, Yu Zhang, Peijie Huang, Yiying Xie, Jianxun Wang, Shuangyong Wang, Qiuxia Lin, Yichen Bai, Songfu Feng, Nian Cai, Xiaohe Lu

    Published 2025-04-01
    “…ObjectiveTo develop and validate prediction models for reactivation after anti-VEGF intravitreal injection in infants with ROP using multimodal machine learning algorithms. …”
    Get full text
    Article