Search alternatives:
mode » made (Expand Search)
model » madel (Expand Search)
Showing 221 - 240 results of 1,414 for search '((((mode OR model) OR model) OR model) OR more) screening algorithm', query time: 0.28s Refine Results
  1. 221

    Development and application of an early prediction model for risk of bloodstream infection based on real-world study by Xiefei Hu, Shenshen Zhi, Yang Li, Yuming Cheng, Haiping Fan, Haorong Li, Zihao Meng, Jiaxin Xie, Shu Tang, Wei Li

    Published 2025-05-01
    “…Based on the optimal combination, six machine learning algorithms were used to construct an early BSI risk prediction model. …”
    Get full text
    Article
  2. 222

    Development and validation of a risk prediction model for depression in patients with chronic obstructive pulmonary disease by Tong Feng, PeiPei Li, Ran Duan, Zhi Jin

    Published 2025-07-01
    “…Objective This study aimed to develop a machine learning-based model to predict depression risk in COPD patients, utilizing interpretable features from clinical and demographic data to support early intervention. …”
    Get full text
    Article
  3. 223

    Increasing clinicians’ suspicion of ATTR amyloidosis using a retrospective algorithm by Jessica Ammon, John Alexander, Woodson Petit-Frere, Deya Alkhatib, Aranyak Rawal, Grace Newman, Oguz Akbiligic, Brian Borkowski, John Jefferies, Isaac B. Rhea

    Published 2024-11-01
    “…Abstract Background This study aimed to increase the index of suspicion for transthyretin amyloidosis (ATTR) among cardiologists leading to increased screening for amyloidosis. Methods A retrospective algorithm was created to identify patients at risk for ATTR. …”
    Get full text
    Article
  4. 224

    Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA by Quan Wang, Zhaogang Zhang

    Published 2025-06-01
    “…In response to this challenge, this study constructed a collaborative optimization framework based on the Kriging surrogate model and the multi-island genetic algorithm (MIGA). …”
    Get full text
    Article
  5. 225

    Artificial Intelligence and Machine Learning Models for Predicting Drug-Induced Kidney Injury in Small Molecules by Mohan Rao, Vahid Nassiri, Sanjay Srivastava, Amy Yang, Satjit Brar, Eric McDuffie, Clifford Sachs

    Published 2024-11-01
    “…Machine learning (ML) models were developed using four algorithms: Ridge Logistic Regression (RLR), Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN). …”
    Get full text
    Article
  6. 226

    A warning model for predicting patient admissions to the intensive care unit (ICU) following surgery by Li Li, Hongye He, Linjun Xiang, Yongxiang Wang

    Published 2025-06-01
    “…LASSO regression and random forest algorithms were used to screen clinical variables related to postoperative ICU admission. …”
    Get full text
    Article
  7. 227

    Machine learning-based prognostic prediction model of pneumonia-associated acute respiratory distress syndrome by Jing Lv, Juan Chen, Meijun Liu, Xue Dai, Wang Deng

    Published 2025-07-01
    “…The AUC value, AP value, accuracy, sensitivity, specificity, Brier score, and F 1 score were used to evaluate the performance of the models and pick the optimal model. Finally, the SHAP feature importance map was drawn to explain the optimal model.Results10 key variables, namely LAR, Lac, pH, age, PO2/FiO2, ALB, BMI, TP, PT, DBIL were screened using the filtration method. …”
    Get full text
    Article
  8. 228

    A deep learning model to predict Ki-67 positivity in oral squamous cell carcinoma by Francesco Martino, Gennaro Ilardi, Silvia Varricchio, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla

    Published 2024-12-01
    “…Aside from classification, detection, and segmentation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory activity, lowering consumable usage and turnaround time. …”
    Get full text
    Article
  9. 229

    Novel exosome-associated LncRNA model predicts colorectal cancer prognosis and drug response by Chi Zhou, Qian Qiu, Xinyu Liu, Tiantian Zhang, Leilei Liang, Yihang Yuan, Yufo Chen, Weijie Sun

    Published 2025-05-01
    “…Next, we further provide colony formation assay, Transwell assay and xenograft models to understand the carcinogenic effect of MIR4713HG. …”
    Get full text
    Article
  10. 230
  11. 231

    Machine learning-based coronary heart disease diagnosis model for type 2 diabetes patients by Yingxi Chen, Chunyu Wang, Chunyu Wang, Xiaozhu Liu, Minjie Duan, Tianyu Xiang, Haodong Huang, Haodong Huang

    Published 2025-05-01
    “…Five machine learning algorithms, including Logistic regression, Support Vector Machine (SVM), Random Forest (RF), eXtreme gradient boosting (XgBoost), and Light Gradient Boosting Machine (LightGBM), were selected for modeling. …”
    Get full text
    Article
  12. 232

    A Predictive Model for Secondary Posttonsillectomy Hemorrhage in Pediatric Patients: An 8‐Year Retrospective Study by Yuting Ge, Wenchuan Chang, Lixiao Xie, Yan Gao, Yue Xu, Huie Zhu

    Published 2025-02-01
    “…Univariate logistic regression analysis was used to screen features. Multivariate logistic regression and seven machine learning algorithms were used to construct predictive models. …”
    Get full text
    Article
  13. 233

    Practical applications of methods to incorporate patient preferences into medical decision models: a scoping review by Jakub Fusiak, Kousha Sarpari, Inger Ma, Ulrich Mansmann, Verena S. Hoffmann

    Published 2025-03-01
    “…Abstract Background Algorithms and models increasingly support clinical and shared decision-making. …”
    Get full text
    Article
  14. 234

    Accurate prediction of mediolateral episiotomy risk during labor: development and verification of an artificial intelligence model by Tingting Hu, Liheng Zhao, Xueling Zhao, Lin He, Xiaoli Zhong, Zhe Yin, Junjie Chen, Yanting Han, Ka Li

    Published 2025-03-01
    “…Results Twenty eight factors influencing mediolateral episiotomy were screened. The model evaluation results showed that the SVM model has the best prediction ability among the six models, with an accuracy of 0.793, a recall rate of 0.981, a precision rate of 0.790, and a F1 value of 0.875. …”
    Get full text
    Article
  15. 235

    XGBoost Algorithm for Cervical Cancer Risk Prediction: Multi-dimensional Feature Analysis by Sudi Suryadi, Masrizal

    Published 2025-06-01
    “…This study is situated at the intersection of clinical oncology and computational intelligence, exploring the potential of gradient-boosting algorithms to overcome the limitations of conventional screening methodologies. …”
    Get full text
    Article
  16. 236

    Development of an ensemble prediction model for acute graft-versus-host disease in allogeneic transplantation based on machine learning by Lin Song, Xingwei Wu, Mengjia Xu, Ling Xue, Xun Yu, Zongqi Cheng, Chenrong Huang, Liyan Miao

    Published 2025-07-01
    “…Then fifteen algorithms were used to establish models, and an ensemble model was established through soft voting based on the top five performance algorithms. …”
    Get full text
    Article
  17. 237
  18. 238
  19. 239

    A Seasonal Fresh Tea Yield Estimation Method with Machine Learning Algorithms at Field Scale Integrating UAV RGB and Sentinel-2 Imagery by Huimei Liu, Yun Liu, Weiheng Xu, Mei Wu, Leiguang Wang, Ning Lu, Guanglong Ou

    Published 2025-01-01
    “…Subsequently, these 26 features were screened using the random forest algorithm and Pearson correlation analysis. …”
    Get full text
    Article
  20. 240

    Cost-effectiveness analysis of MASLD screening using FIB-4 based two-step algorithm in the medical check-up by Mimi Kim, Huiyul Park, Eileen L. Yoon, Ramsey Cheung, Donghee Kim, Hye-Lin Kim, Dae Won Jun

    Published 2025-06-01
    “…We constructed a hybrid model of the decision tree model and Markov model to compare expected costs and quality-adjusted life-years (QALYs) between ‘screening’ and ‘no screening’ groups from healthcare system perspectives. …”
    Get full text
    Article