Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 921 - 940 results of 1,273 for search '((((mode OR model) OR (model OR model)) OR model) OR made) screening algorithm', query time: 0.23s Refine Results
  1. 921

    Spatial and temporal distribution patterns and factors influencing hepatitis B in China: a geo-epidemiological study by Kang Fang, Na Cheng, Chuang Nie, Wentao Song, Yunkang Zhao, Jie Pan, Qi Yin, Jiwei Zheng, Qinglin Chen, Tianxin Xiang

    Published 2025-04-01
    “…Spatial autocorrelation analysis and spatiotemporal scanning were used to analyze the spatiotemporal distribution characteristics. The random forest algorithm was used to screen the potential influencing factors. …”
    Get full text
    Article
  2. 922

    Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis by Bernard Friedenson

    Published 2025-01-01
    “…EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce. If this model applies to human breast cancers, then they should have genome damage characteristic of EBV infection. …”
    Get full text
    Article
  3. 923

    Dielectric tensor prediction for inorganic materials using latent information from preferred potential by Zetian Mao, WenWen Li, Jethro Tan

    Published 2024-11-01
    “…We develop an equivariant readout decoder to predict total, electronic, and ionic dielectric tensors while preserving O(3) equivariance, and benchmark its performance against state-of-the-art algorithms. Virtual screening of thermodynamically stable materials from Materials Project for two discovery tasks, high-dielectric and highly anisotropic materials, identifies promising candidates including Cs2Ti(WO4)3 (band gap E g = 2.93eV, dielectric constant ε = 180.90) and CsZrCuSe3 (anisotropic ratio α r = 121.89). …”
    Get full text
    Article
  4. 924
  5. 925

    A secure and efficient user selection scheme in vehicular crowdsensing by Min Zhang, Qing Ye, Zhimin Yuan, Kaihuan Deng

    Published 2025-05-01
    “…The model uses PCA for data dimensionality reduction to eliminate redundant information and then employs LSTM to process time series data, capture long-term dependencies for more accurate user credit prediction, screen high-quality users, and improve perceived data quality. …”
    Get full text
    Article
  6. 926

    Exhaled volatile organic compounds as novel biomarkers for early detection of COPD, asthma, and PRISm: a cross-sectional study by Jiaxin Tian, Qiurui Zhang, Minhua Peng, Leixin Guo, Qianqian Zhao, Wei Lin, Sitong Chen, Xuefei Liu, Simin Xie, Wenxin Wu, Yijie Li, Junqi Wang, Jin Cao, Ping Wang, Min Zhou

    Published 2025-05-01
    “…Subsequently, classification models were established by machine learning algorithms, based on these VOC markers along with baseline characteristics. …”
    Get full text
    Article
  7. 927

    A comparison of tools used for tuberculosis diagnosis in resource-limited settings: a case study at Mubende referral hospital, Uganda. by Adrian Muwonge, Sydney Malama, Barend M de C Bronsvoort, Demelash Biffa, Willy Ssengooba, Eystein Skjerve

    Published 2014-01-01
    “…The three-predictor screening algorithm with and without DZM classified 50% and 33% of the true cases respectively, while the adjusted algorithm with DZM classified 78% of the true cases.…”
    Get full text
    Article
  8. 928

    ATP6AP1 drives pyroptosis-mediated immune evasion in hepatocellular carcinoma: a machine learning-guided therapeutic target by Lei Tang, Xiyue Wang, Zhengzheng Xia, Jiayu Yan, Shanshan Lin

    Published 2025-04-01
    “…Results Through a rigorous multi-algorithm screening process, ATP6AP1 was found to be a highly reliable biomarker with an area under the curve (AUC) of 0.979. …”
    Get full text
    Article
  9. 929

    Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning by Jonne Pohjankukka, Timo A. Räsänen, Timo P. Pitkänen, Arttu Kivimäki, Ville Mäkinen, Tapio Väänänen, Jouni Lerssi, Aura Salmivaara, Maarit Middleton

    Published 2025-03-01
    “…We carefully split the reference data into training and test sets, allowing for independent and robust model validation. Feature selection included an initial screening for multicollinearity using correlation-based feature pruning, followed by final selection using a genetic algorithm. …”
    Get full text
    Article
  10. 930

    Postpartum depression in Northeastern China: a cross-sectional study 6 weeks after giving birth by XuDong Huang, LiFeng Zhang, ChenYang Zhang, Jing Li, ChenYang Li

    Published 2025-05-01
    “…Feature importance was ranked via a random forest model based on the change in ROC-AUC after predictor removal. …”
    Get full text
    Article
  11. 931

    Drug–target interaction prediction by integrating heterogeneous information with mutual attention network by Yuanyuan Zhang, Yingdong Wang, Chaoyong Wu, Lingmin Zhan, Aoyi Wang, Caiping Cheng, Jinzhong Zhao, Wuxia Zhang, Jianxin Chen, Peng Li

    Published 2024-11-01
    “…DrugMAN uses a graph attention network-based integration algorithm to learn network-specific low-dimensional features for drugs and target proteins by integrating four drug networks and seven gene/protein networks collected by a certain screening conditions, respectively. …”
    Get full text
    Article
  12. 932

    Machine Learning for Predicting Zearalenone Contamination Levels in Pet Food by Zhenlong Wang, Wei An, Jiaxue Wang, Hui Tao, Xiumin Wang, Bing Han, Jinquan Wang

    Published 2024-12-01
    “…Other algorithms showed moderate accuracy, ranging from 77.1% to 84.8%. …”
    Get full text
    Article
  13. 933

    Interpretable machine learning for depression recognition with spatiotemporal gait features among older adults: a cross-sectional study in Xiamen, China by Shaowu Lin, Sicheng Li, Ya Fang

    Published 2025-07-01
    “…The developed machine learning models with high predictive accuracy, suggest the potential of Kinect-based gait assessment as a real-time and cost-effective screening tool for older adults with depressive symptoms.…”
    Get full text
    Article
  14. 934

    Detection of Undiagnosed Liver Cirrhosis via Artificial Intelligence-Enabled Electrocardiogram (DULCE): Rationale and design of a pragmatic cluster randomized clinical trial by Amy Olofson, Ryan Lennon, Blake Kassmeyer, Kan Liu, Zacchi I. Attia, David Rushlow, Puru Rattan, Joseph C. Ahn, Paul A. Friedman, Alina Allen, Patrick S. Kamath, Vijay H. Shah, Peter A. Noseworthy, Douglas A. Simonetto

    Published 2025-06-01
    “…A novel electrocardiogram (ECG)-enabled deep learning model trained for detection of advanced chronic liver disease (CLD) has demonstrated promising results and it may be used for screening of advanced CLD in primary care. …”
    Get full text
    Article
  15. 935

    Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation by Yoonsung Kwon, Asta Blazyte, Yeonsu Jeon, Yeo Jin Kim, Kyungwhan An, Sungwon Jeon, Hyojung Ryu, Dong-Hyun Shin, Jihye Ahn, Hyojin Um, Younghui Kang, Hyebin Bak, Byoung-Chul Kim, Semin Lee, Hyung-Tae Jung, Eun-Seok Shin, Jong Bhak

    Published 2025-02-01
    “…Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost. …”
    Get full text
    Article
  16. 936

    Multi-Dimensional Lithology Identification Method Based on Microresistivity Image Logging by LIU Juan, MIN Xuanlin, QI Zhongli, YI Jun, LAI Fuqiang, ZHOU Wei

    Published 2023-12-01
    “…For the electrical imaging color features of different resistivity responses (mudstone, calcareous mudstone and sandy mudstone), K-means++ algorithm is used to screen out the clustering centers of the overall distribution of the data set to achieve fast classification of the electro-imaging colors. …”
    Get full text
    Article
  17. 937

    Estimation of Canopy Chlorophyll Content of Apple Trees Based on UAV Multispectral Remote Sensing Images by Juxia Wang, Yu Zhang, Fei Han, Zhenpeng Shi, Fu Zhao, Fengzi Zhang, Weizheng Pan, Zhiyong Zhang, Qingliang Cui

    Published 2025-06-01
    “…The estimation models for the SPAD values in different growth stages were, respectively, established through five machine learning algorithms: multiple linear regression (MLR), partial least squares regression (PLSR), support vector regression (SVR), random forest (RF) and extreme gradient boosting (XGBoost). …”
    Get full text
    Article
  18. 938
  19. 939

    Plasma FGF2 and YAP1 as novel biomarkers for MCI in the elderly: analysis via bioinformatics and clinical study by Yejing Zhao, Yejing Zhao, Xiang Wang, Jie Zhang, Yanyan Zhao, Yi Li, Ji Shen, Ying Yuan, Jing Li

    Published 2025-08-01
    “…To address this gap, datasets GSE29378 and GSE12685 were selected to screen differentially expressed genes (DEGs), and hub genes were identified by different algorithms. …”
    Get full text
    Article
  20. 940

    Immune Evasion Mechanism Mediated by ITPRIPL1 and Its Prognostic Implications in Glioma by Zou Xiaoyun, Ye Wenhao, Wu Huan, Yang Yuanyuan, Liu Changqing, Wen Hebao, Ma Caiyun

    Published 2025-08-01
    “…Ninety‐eight machine learning algorithm combinations were screened to identify the optimal predictive model. …”
    Get full text
    Article