-
401
Short-Term Photovoltaic Power Combined Prediction Based on Feature Screening and Weight Optimization
Published 2025-01-01“…Aiming at the problem of low prediction accuracy caused by the intermittent and fluctuating characteristics of photovoltaic power, a short-term photovoltaic power combined prediction method based on feature screening and weight optimization is proposed. Firstly, K-means is used to cluster the photovoltaic power; Secondly, CEEMDAN is used to decompose photovoltaic power and wavelet decomposition is used to decompose irradiance, and sample entropy and K-means are used to reconstruct each component of photovoltaic power into high, intermediate, and low frequency terms; Then, Spearman’s correlation coefficient is used to calculate the correlation between each meteorological factor and the decomposed irradiance component and the high, intermediate, and low frequency terms of photovoltaic power, and the feature selection is carried out; Then, CNN-BiLSTM-Attention is used to predict the high frequency term, LSTM is used to predict the intermediate frequency and low frequency terms, and the results are superimposed to obtain the preliminary prediction value; Finally, the dung beetle algorithm is used to optimize the weights of the initial prediction values of the training set of high, intermediate, and low frequency terms, and the optimal weight is substituted into the test set to obtain the final prediction result. …”
Get full text
Article -
402
Artificial intelligence in primary aldosteronism: current achievements and future challenges
Published 2025-08-01“…Recent advances in artificial intelligence (AI) are reshaping the diagnostic and therapeutic of primary aldosteronism (PA). For screening, machine learning models integrate multidimensional data to improve the efficiency of PA detection, facilitating large-scale population screening. …”
Get full text
Article -
403
Learning from the machine: is diabetes in adults predicted by lifestyle variables? A retrospective predictive modelling study of NHANES 2007–2018
Published 2025-03-01“…This study is innovative in its integration of machine learning algorithms to predict type 2 diabetes based solely on non-invasive, easily accessible lifestyle and anthropometric variables, demonstrating the potential of data-driven models for early risk assessment without requiring laboratory tests. …”
Get full text
Article -
404
Developing a logistic regression model to predict spontaneous preterm birth from maternal socio-demographic and obstetric history at initial pregnancy registration
Published 2024-10-01“…Abstract Background Current predictive machine learning techniques for spontaneous preterm birth heavily rely on a history of previous preterm birth and/or costly techniques such as fetal fibronectin and ultrasound measurement of cervical length to the disadvantage of those considered at low risk and/or those who have no access to more expensive screening tools. Aims and objectives We aimed to develop a predictive model for spontaneous preterm delivery < 37 weeks using socio-demographic and clinical data readily available at booking -an approach which could be suitable for all women regardless of their previous obstetric history. …”
Get full text
Article -
405
An early lung cancer diagnosis model for non-smokers incorporating ct imaging analysis and circulating genetically abnormal cells (CACs)
Published 2025-01-01“…Five artificial intelligence (AI) algorithms were used to build two kinds of models and identify which one was better at diagnosing non-smoking pulmonary nodules patients. …”
Get full text
Article -
406
Lightweight Detection Algorithm for Breast-Mass Features in Ultrasound Images
Published 2025-01-01Get full text
Article -
407
Domain name generation algorithm based on improved Markov chain
Published 2024-11-01“…Then, the improved Markov model algorithm was used to analyze the filtered data, and new subdomain names were generated and added to the result set. …”
Get full text
Article -
408
Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in hepatocellular carcinoma
Published 2025-07-01“…In this study, transcriptomic data from the TCGA-LIHC dataset were used to identify differentially expressed cytoskeleton-related genes associated with overall survival (OS). Prognostic models were constructed using LASSO regression and random forest algorithms, and validated in two independent cohorts (ICGC LIRI-JP and CHCC-HBV). …”
Get full text
Article -
409
Hybrid closed-loop systems for managing blood glucose levels in type 1 diabetes: a systematic review and economic modelling
Published 2024-12-01“…The studies’ authors clearly stated their research question, the viewpoint of their analyses and their modelling objectives. Studies that used the iQVIA model described the model as one with a complex semi-Markov model structure with interdependent sub-models, so more thorough, easier access to its reported features would be of benefit to the intended audience. …”
Get full text
Article -
410
Machine learning models to predict osteoporosis in patients with chronic kidney disease stage 3–5 and end-stage kidney disease
Published 2025-04-01“…Calibration and decision curve analyses further demonstrated the reliability and applicability of the ANN model. The ANN model demonstrated the potential for clinical implementation in screening high-risk patients for osteoporosis.…”
Get full text
Article -
411
PLOD3 as a novel oncogene in prognostic and immune infiltration risk model based on multi-machine learning in cervical cancer
Published 2025-03-01“…We identified 112 key metabolic genes, which were used to construct and validate a prognostic model through various machine learning algorithms. …”
Get full text
Article -
412
-
413
Application of iLogic technology in Autodesk inventor to create parametric 3D-model of a gear wheel and conduct research
Published 2020-03-01“…The article presents an algorithm and tools for creating controlled 3D models using iLogic on the example of a 3D model of a gear wheel. …”
Get full text
Article -
414
Round reduction-based fault attack on SM4 algorithm
Published 2016-10-01“…A novel method of fault attack based on round reduction against SM4 algorithm was proposed.Faults were in-jected into the last four rounds of the SM4 encryption algorithm,so that the number of the algorithm's rounds can be re-duced.In known-ciphertext scenario,four traces are enough to recover the total 128 bit master key by screening these faults easily.The proposed attack is made to an unprotected SM4 smart card.Experiment shows that this attack method is efficient,and which not only simplifies the existing differential fault attack,but also improves the feasibility of the attack.…”
Get full text
Article -
415
Laryngeal cancer diagnosis based on improved YOLOv8 algorithm
Published 2025-01-01“…A novel multiscale enhanced convolution module has been introduced to improve the model’s feature extraction capabilities for small-sized targets. …”
Get full text
Article -
416
Application of Artificial Intelligence Algorithms in the Field of Antimicrobial Peptide Prediction
Published 2025-06-01“…Currently, several specialized databases have been established, providing rich resources for algorithmic model training. Furthermore, multi-source bioinformatics data such as genomics, transcriptomics and proteomics are also widely used to predict antimicrobial peptides, with a view to identifying peptides with potential antimicrobial activity more accurately. …”
Get full text
Article -
417
Analysis of immune status and prognostic model incorporating lactate metabolism and immune-related genes in clear cell renal cell carcinoma
Published 2025-06-01“…The Cox proportional hazards regression model and the LASSO algorithm were combined to screen the core genes related to prognosis. …”
Get full text
Article -
418
Utilizing SMOTE-TomekLink and machine learning to construct a predictive model for elderly medical and daily care services demand
Published 2025-03-01“…The LightGBM algorithm emerged as the superior prediction model for estimating the service needs of the elderly. …”
Get full text
Article -
419
Multiple automated machine-learning prediction models for postoperative reintubation in patients with acute aortic dissection: a multicenter cohort study
Published 2025-04-01“…The least absolute shrinkage and selection operator (LASSO) was used for screening risk variables associated with reintubation for subsequent model construction. …”
Get full text
Article -
420
Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm
Published 2025-07-01Get full text
Article