Showing 81 - 100 results of 1,436 for search '((((mode OR made) OR (model OR model)) OR model) OR more) screening algorithm', query time: 0.24s Refine Results
  1. 81

    Predictive model establishment for forward-head posture disorder in primary-school-aged children based on multiple machine learning algorithms by Hongjun Tao, Yang Wen, Rongfang Yu, Yining Xu, Fangliang Yu

    Published 2025-05-01
    “…Multiple machine learning algorithms are applied to construct distinct risk prediction models, with the most effective model selected through comparative analysis. …”
    Get full text
    Article
  2. 82

    Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning algorithm study by Chuang Li, Youbei Lin, Xuyang Xiao, Xinru Guo, Jinrui Fei, Yanyan Lu, Junling Zhao, Lan Zhang

    Published 2025-06-01
    “…This study demonstrates that machine learning models—particularly the RF algorithm—hold substantial promise for predicting kinesiophobia in postoperative lung cancer patients. …”
    Get full text
    Article
  3. 83

    Research of color models in digital graphics by Hetman Oksana, Shpetna Svitlana

    Published 2024-12-01
    “…The study focuses on a detailed examination of the RGB, CMYK, HSL/HSV, and LAB color models. It is established that the RGB model is an additive system optimized for screens and displays, as it provides a broad and vibrant color range suitable for digital applications. …”
    Get full text
    Article
  4. 84

    A diagnostic prediction model for anti-neutrophil cytoplasmic antibody associated vasculitis combined with glomerulonephritis based on machine learning algorithm by Wang Jian-mei, Zhu Ge-li, Cao Chen-lin, Peng Qing-quan

    Published 2025-02-01
    “…<italic>EHHADH</italic>, <italic>CCL2</italic>, <italic>FN1</italic>, <italic>IL1B</italic>, <italic>VAV1</italic>, <italic>CXCR4</italic>, <italic>CCL5</italic>, and <italic>CD44</italic>were core genes in the PPI network. The RF algorithm screened out 15 characteristic genes, and the artificial neural network algorithm calculated the weight of each characteristic gene and successfully constructed a diagnostic model. …”
    Get full text
    Article
  5. 85

    A diagnostic prediction model for anti-neutrophil cytoplasmic antibody associated vasculitis combined with glomerulonephritis based on machine learning algorithm by Wang Jian-mei, Zhu Ge-li, Cao Chen-lin, Peng Qing-quan

    Published 2025-02-01
    “…EHHADH, CCL2, FN1, IL1B, VAV1, CXCR4, CCL5, and CD44were core genes in the PPI network. The RF algorithm screened out 15 characteristic genes, and the artificial neural network algorithm calculated the weight of each characteristic gene and successfully constructed a diagnostic model. …”
    Get full text
    Article
  6. 86

    Development of machine learning models to predict the risk of fungal infection following flexible ureteroscopy lithotripsy by Haofang Zhang, Changbao Xu, Chenge Hu, Yunlai Xue, Daoke Yao, Yifan Hu, Ankang Wu, Miao Dai, Hang Ye

    Published 2025-04-01
    “…Our study aimed to construct a machine learning algorithm predictive model to predict the risk of fungal infection following F-URL. …”
    Get full text
    Article
  7. 87
  8. 88

    Identification of maize kernel varieties based on interpretable ensemble algorithms by Chunguang Bi, Chunguang Bi, Xinhua Bi, Jinjing Liu, Hao Xie, Shuo Zhang, He Chen, Mohan Wang, Lei Shi, Lei Shi, Shaozhong Song

    Published 2025-02-01
    “…Morphological and hyperspectral data of maize samples were extracted and preprocessed, and three methods were used to screen features, respectively. The base learner of the Stacking integration model was selected using diversity and performance indices, with parameters optimized through a differential evolution algorithm incorporating multiple mutation strategies and dynamic adjustment of mutation factors and recombination rates. …”
    Get full text
    Article
  9. 89

    Advancing Alzheimer’s disease risk prediction: development and validation of a machine learning-based preclinical screening model in a cross-sectional study by Yanfei Chen, Bing Wang, Yankai Shi, Wenhao Qi, Shihua Cao, Bingsheng Wang, Ruihan Xie, Jiani Yao, Xiajing Lou, Chaoqun Dong, Xiaohong Zhu, Danni He

    Published 2025-02-01
    “…The study utilised Random Forest and Extreme Gradient Boosting (XGBoost) algorithms alongside traditional logistic regression for modelling. …”
    Get full text
    Article
  10. 90

    Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets by Kuoyuan Cheng, Laura Martin‐Sancho, Lipika R Pal, Yuan Pu, Laura Riva, Xin Yin, Sanju Sinha, Nishanth Ulhas Nair, Sumit K Chanda, Eytan Ruppin

    Published 2021-10-01
    “…Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. …”
    Get full text
    Article
  11. 91
  12. 92

    Unlocking The Potential of Hybrid Models for Prognostic Biomarker Discovery in Oral Cancer Survival Analysis: A Retrospective Cohort Study by Leila Nezamabadi Farahani, Anoshirvan Kazemnejad, Mahlagha Afrasiabi, Leili Tapak

    Published 2024-12-01
    “…Concordance index (C-index), mean absolute error (MAE), mean squared error (MSE) and R-squares, were used to evaluate the performance of the models using selected features. Functional enrichment analysis was performed using DAVID database, and external validation utilized three independent datasets (GSE9844, GSE75538, GSE37991, GSE42743).Results: The findings indicated that the PSO-based method outperformed the GA-based method, achieving a smaller MAE (0.061) and MSE (0.005), R-square (0.99) and C-index (0.973), selecting 291 probes from 1069 screened. …”
    Get full text
    Article
  13. 93
  14. 94
  15. 95

    Machine Learning Model for Early Detection of COVID-19 by Heart Rhythm Abnormalities by M. S. Mezhov, V. O. Kozitsin, Iu. D. Katser

    Published 2023-07-01
    “…The work aims at creating a mathematical model based on machine learning algorithms to automate the process of detecting covid abnormalities in the heart rhythm. …”
    Get full text
    Article
  16. 96

    Development of prediction models for screening depression and anxiety using smartphone and wearable-based digital phenotyping: protocol for the Smartphone and Wearable Assessment f... by Sujin Kim, Ah Young Kim, Yu-Bin Shin, Seonmin Kim, Min-Sup Shin, Jinhwa Choi, Kyung Lyun Lee, Jisu Lee, Sangwon Byun, Heon-Jeong Lee, Chul-Hyun Cho

    Published 2025-06-01
    “…The Smartphone and Wearable Assessment for Real-Time Screening of Depression and Anxiety study aims to develop prediction algorithms to identify individuals at risk for depressive and anxiety disorders, as well as those with mild-to-severe levels of either condition or both. …”
    Get full text
    Article
  17. 97

    COMPUTER- AIDED MODELING AND IMPROVING OF RISOGRAPH PRINTING by P. E. Sulim, V. S. Yudenkov

    Published 2014-12-01
    “…The considered improvement of qualit y of the risofraph print based on a mathematical model in the environment Matlab by using the specialized algorithms and digital filter of the Image Processing Toolbox. …”
    Get full text
    Article
  18. 98

    Screening risk factors for the occurrence of wedge effects in intramedullary nail fixation for intertrochanteric fractures in older people via machine learning and constructing a p... by Zhe Xu, Qiuhan Chen, Zhi Zhou, Jianbo Sun, Guang Tian, Chen Liu, Guangzhi Hou, Ruguo Zhang

    Published 2025-04-01
    “…The purpose of this study was to screen risk factors for the intraoperative V-effect in intertrochanteric fractures and to develop a clinical prediction model. …”
    Get full text
    Article
  19. 99

    Screening Model for Bladder Cancer Early Detection With Serum miRNAs Based on Machine Learning: A Mixed‐Cohort Study Based on 16,189 Participants by Cong Lai, Zhensheng Hu, Jintao Hu, Zhuohang Li, Lin Li, Mimi Liu, Zhikai Wu, Yi Zhou, Cheng Liu, Kewei Xu

    Published 2024-10-01
    “…Five machine learning algorithms were utilized to develop screening models for BCa using the training dataset. …”
    Get full text
    Article
  20. 100

    Screening for More than 1,000 Pesticides and Environmental Contaminants in Cannabis by GC/Q-TOF by Philip L. Wylie, Jessica Westland, Mei Wang, Mohamed M. Radwan, Chandrani G. Majumdar, Mahmoud A. ElSohly

    Published 2020-01-01
    “… A method has been developed to screen cannabis extracts for more than 1,000 pesticides and environmental pollutants using a gas chromatograph coupled to a high-resolution accurate mass quadrupole time-of-flight mass spectrometer (GC/Q-TOF). …”
    Get full text
    Article