-
561
Machine learning based predictive modeling and risk factors for prolonged SARS-CoV-2 shedding
Published 2024-11-01“…This study involved a large cohort of 56,878 hospitalized patients, and we leveraged the XGBoost algorithm to establish a predictive model based on these features. …”
Get full text
Article -
562
Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth
Published 2024-12-01“…Identification of new selective EGFR-T790M inhibitors has proven challenging through traditional screening platforms. With great advances in computer algorithms, machine learning improved the screening rates of molecules at full chemical spaces, and these molecules will present higher biological activity and targeting efficiency. …”
Get full text
Article -
563
Oxidative stress-related genes in uveal melanoma: the role of CALM1 in modulating oxidative stress and apoptosis and its prognostic significance
Published 2025-08-01“…Protein–protein interaction (PPI) networks were constructed to identify hub genes, and machine learning algorithms were utilized to screen for diagnostic genes, employing methods such as least absolute shrinkage and selection operator (LASSO) regression, random forest, support vector machine (SVM), gradient boosting machine (GBM), neural network algorithm (NNET), and eXtreme gradient boosting (XGBoost). …”
Get full text
Article -
564
Civil Aircraft Landing Attitude Ultra-Limit Warning System Based on mRMR-LSTM
Published 2025-06-01“…Then, the Max-Relevance and Min-Redundancy algorithm was applied to screen the QAR (Quick Access Recorder) parameters with the highest correlation with the predictor variables, and the LSTM network model was established to predict the pitch and roll angles of the aircraft landing, respectively. …”
Get full text
Article -
565
Construction and validation of a machine learning based prognostic prediction model for children with traumatic brain injury
Published 2025-05-01“…Then, the risk scores and other indicators were used to construct an extended prediction model through the extreme gradient boosting (XGBoost) algorithm. …”
Get full text
Article -
566
Utilizing machine learning models for predicting outcomes in acute pancreatitis: development and validation in three retrospective cohorts
Published 2025-07-01“…Six ML algorithms were employed to construct predictive models. …”
Get full text
Article -
567
Prognosis modelling of adverse events for post-PCI treated AMI patients based on inflammation and nutrition indexes
Published 2025-01-01“…Logistic Regression was used to screen for factors that were significant for ML model establishment. …”
Get full text
Article -
568
Parameter Sensitivity Analysis and Irrigation Regime Optimization for Jujube Trees in Arid Regions Using the WOFOST Model
Published 2025-08-01“…In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but their predictive accuracy is often compromised by parameter uncertainty. …”
Get full text
Article -
569
Development and Validation of the Promising PPAR Signaling Pathway-Based Prognostic Prediction Model in Uterine Cervical Cancer
Published 2023-01-01“…Furthermore, cervical cancer patients with different PPAR scores show different sensitivity to immune checkpoint therapy. In order to screen the genes to serve as the best biomarker for cervical cancer patients, we then construct the PPAR-based prognostic prediction model. …”
Get full text
Article -
570
-
571
Systematic Construction and Validation of a Novel Ferroptosis-Related Gene Model for Predicting Prognosis in Cervical Cancer
Published 2022-01-01“…The prediction model was verified by the nomogram integrating clinical characteristics; the GSE44001 dataset was used as an external verification. …”
Get full text
Article -
572
A web-based prediction model for brain metastasis in non-small cell lung cancer patients
Published 2025-07-01“…Subsequently, seven machine learning models were constructed employing diverse algorithms, namely Logistic Regression (LR), Classification and Regression Tree (CART), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting (XGBOOST). …”
Get full text
Article -
573
Modeling the determinants of attrition in a two-stage epilepsy prevalence survey in Nairobi using machine learning
Published 2025-06-01“…The dataset was split into training and testing sets (7:3 ratio), and seven machine learning models, including the ensemble Super Learner, were trained. …”
Get full text
Article -
574
Development of a high-performing, cost-effective and inclusive Afrocentric predictive model for stroke: a meta-analysis approach
Published 2025-07-01“…Conclusions Targeted screening via the CAPMS 1 and CAPMS 2 models offers a cost-effective solution for stroke screening in African clinics and communities. …”
Get full text
Article -
575
ST-YOLO: a deep learning based intelligent identification model for salt tolerance of wild rice seedlings
Published 2025-06-01“…Diversified feature extraction paths are introduced to enhance the ability of feature extraction; Introducing CAFM (Context Aware Feature Modulation) convolution and attention fusion modules into the backbone network to enhance feature representation capabilities while improving the fusion of features at various scales; Design a more flexible and effective spatial pyramid pooling layer using deformable convolution and spatial information enhancement modules to improve the model’s ability to represent target features and detection accuracy.ResultsThe experimental results show that the improved algorithm improves the average precision by 2.7% compared with the original network; the accuracy rate improves by 3.5%; and the recall rate improves by 4.9%.ConclusionThe experimental results show that the improved model significantly improves in precision compared with the current mainstream model, and the model evaluates the salt tolerance level of wild rice varieties, and screens out a total of 2 varieties that are extremely salt tolerant and 7 varieties that are salt tolerant, which meets the real-time requirements, and has a certain reference value for the practical application.…”
Get full text
Article -
576
Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients
Published 2025-03-01“…In addition, the prediction results of the XGBoost model were interpreted in detail using the SHAP algorithm. …”
Get full text
Article -
577
Machine learning-driven prediction model for cuproptosis-related genes in spinal cord injury: construction and experimental validation
Published 2025-04-01“…Three machine learning models (RF, LASSO, and SVM) were constructed to screen candidate genes, and a Nomogram model was used for verification. …”
Get full text
Article -
578
Early prediction of colorectal adenoma risk: leveraging large-language model for clinical electronic medical record data
Published 2025-05-01“…Several classical machine learning algorithms were applied in combination with the BGE-M3 large-language model (LLM) for enhanced semantic feature extraction. …”
Get full text
Article -
579
AI-Based Prediction of Visual Performance in Rhythmic Gymnasts Using Eye-Tracking Data and Decision Tree Models
Published 2025-07-01“…Conclusion: The decision tree algorithm achieved the highest performance in predicting short-term fixation stability, but its effectiveness was limited in tasks involving accommodative facility, where other models such as SVM and KNN outperformed it in specific metrics. …”
Get full text
Article -
580
Machine learning‐based model for worsening heart failure risk in Chinese chronic heart failure patients
Published 2025-02-01“…Eighty per cent of the data was used for training and 20% for testing. The best models were identified by integrating nine ML algorithms and interpreted using SHAP, and to develop a final risk calculation tool. …”
Get full text
Article