Showing 441 - 460 results of 1,436 for search '(((((mode OR model) OR (more OR more)) OR (more OR more)) OR more) OR made) screening algorithm', query time: 0.30s Refine Results
  1. 441
  2. 442

    A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification by Satitpitakul V, Puangsricharern A, Yuktiratna S, Jaisarn Y, Sangsao K, Puangsricharern V, Kasetsuwan N, Reinprayoon U, Kittipibul T

    Published 2025-01-01
    “…Our models can be used as a screening tool for non-ophthalmic health care providers and ophthalmologists for rapid provisional diagnosis of infectious keratitis.Keywords: infectious keratitis, cornea ulcer, keratitis, conventional neural network, deep learning algorithm…”
    Get full text
    Article
  3. 443

    Development and Validation of Early Alert Model for Diabetes Mellitus–Tuberculosis Comorbidity by Zhaoyang Ye, Guangliang Bai, Ling Yang, Li Zhuang, Linsheng Li, Yufeng Li, Ruizi Ni, Yajing An, Liang Wang, Wenping Gong

    Published 2025-04-01
    “…This study identified three potential immune-related biomarkers for DM–TB, and the constructed risk assessment model demonstrated significant predictive efficiency, providing an early screening strategy for DM–TB.…”
    Get full text
    Article
  4. 444

    Explainable Artificial Intelligence Models for Predicting Depression Based on Polysomnographic Phenotypes by Doljinsuren Enkhbayar, Jaehoon Ko, Somin Oh, Rumana Ferdushi, Jaesoo Kim, Jaehong Key, Erdenebayar Urtnasan

    Published 2025-02-01
    “…Advanced machine learning algorithms such as random forest, extreme gradient boosting, categorical boosting, and light gradient boosting machines were employed to train and validate the predictive AI models. …”
    Get full text
    Article
  5. 445

    A web-based tool for predicting gastric ulcers in Chinese elderly adults based on machine learning algorithms and noninvasive predictors: A national cross-sectional and cohort stud... by Xingjian Xiao, Xiaohan Yi, Zumin Shi, Zongyuan Ge, Hualing Song, Hailei Zhao, Tiantian Liang, Xinming Yang, Suxian Liu, Bo Sun, Xianglong Xu

    Published 2025-04-01
    “…We employed nine machine learning algorithms to construct predictive models for gastric ulcers over the next seven years (2011–2018, with 1482 samples) and the next three years (2014–2018, with 2659 samples). …”
    Get full text
    Article
  6. 446

    Understanding the flowering process of litchi through machine learning predictive models by SU Zuanxian, NING Zhenchen, WANG Qing, CHEN Houbin

    Published 2025-05-01
    “…The models were applied to be constructed in R-project (version 3.5.2) and the ‘caret’ package was applied to tune the machine learning algorithm parameters. …”
    Get full text
    Article
  7. 447

    Development and validation of interpretable machine learning models for postoperative pneumonia prediction by Bingbing Xiang, Yiran Liu, Shulan Jiao, Wensheng Zhang, Shun Wang, Mingliang Yi

    Published 2024-12-01
    “…This study aimed to develop and validate a predictive model for postoperative pneumonia in surgical patients using nine machine learning methods.ObjectiveOur study aims to develop and validate a predictive model for POP in surgical patients using nine machine learning algorithms. …”
    Get full text
    Article
  8. 448

    Bias Mitigation in Primary Health Care Artificial Intelligence Models: Scoping Review by Maxime Sasseville, Steven Ouellet, Caroline Rhéaume, Malek Sahlia, Vincent Couture, Philippe Després, Jean-Sébastien Paquette, David Darmon, Frédéric Bergeron, Marie-Pierre Gagnon

    Published 2025-01-01
    “…However, these approaches sometimes exacerbated prediction errors across groups or led to overall model miscalibrations. ConclusionsThe results suggest that biases toward diverse groups are more easily mitigated when data are open-sourced, multiple stakeholders are engaged, and during the algorithm’s preprocessing stage. …”
    Get full text
    Article
  9. 449

    Developing the new diagnostic model by integrating bioinformatics and machine learning for osteoarthritis by Jian Du, Tian Zhou, Wei Zhang, Wei Peng

    Published 2024-12-01
    “…Then, the PPI network analysis identified 21 hub genes, and three machine learning algorithms finally screened four feature genes (BTG2, CALML4, DUSP5, and GADD45B). …”
    Get full text
    Article
  10. 450

    Machine learning and discriminant analysis model for predicting benign and malignant pulmonary nodules by Zhi Li, Wenjing Zhang, Jinyi Huang, Ling Lu, Dongming Xie, Jinrong Zhang, Jiamin Liang, Yuepeng Sui, Linyuan Liu, Jianjun Zou, Ao Lin, Lei Yang, Fuman Qiu, Zhaoting Hu, Mei Wu, Yibin Deng, Xin Zhang, Jiachun Lu

    Published 2025-07-01
    “…Three widely applicable machine learning algorithms (Random Forests, Gradient Boosting Machine, and XGBoost) were used to screen the metrics, and then the corresponding predictive models were constructed using discriminative analysis, and the best performing model was selected as the target model. …”
    Get full text
    Article
  11. 451

    A novel model for predicting immunotherapy response and prognosis in NSCLC patients by Ting Zang, Xiaorong Luo, Yangyu Mo, Jietao Lin, Weiguo Lu, Zhiling Li, Yingchun Zhou, Shulin Chen

    Published 2025-05-01
    “…Methods Patients were randomly divided into training cohort and validation cohort at a ratio of 2:1. The random forest algorithm was applied to select important variables based on routine blood tests, and a random forest (RF) model was constructed to predict the efficacy and prognosis of ICIs treatment. …”
    Get full text
    Article
  12. 452

    Identification of Alzheimer’s disease biomarkers and their immune function characterization by Mingkai Lin, Yue Zhou, Peixian Liang, Ruoyi Zheng, Minwei Du, Xintong Ke, Wenjing Zhang, Pei Shang

    Published 2024-06-01
    “…Material and methods Based on bulk RNA-seq (GSE122063 and GSE97760), we screened potential biomarkers for AD by differential expression analysis and machine learning algorithms. …”
    Get full text
    Article
  13. 453
  14. 454
  15. 455

    Evaluating Medical Entity Recognition in Health Care: Entity Model Quantitative Study by Shengyu Liu, Anran Wang, Xiaolei Xiu, Ming Zhong, Sizhu Wu

    Published 2024-10-01
    “…The macrofactors affecting model performance were also screened using the multilevel factor elimination algorithm. …”
    Get full text
    Article
  16. 456

    A Deep Learning Segmentation Model for Detection of Active Proliferative Diabetic Retinopathy by Sebastian Dinesen, Marianne G. Schou, Christoffer V. Hedegaard, Yousif Subhi, Thiusius R. Savarimuthu, Tunde Peto, Jakob K. H. Andersen, Jakob Grauslund

    Published 2025-03-01
    “…We then applied our pre-established DL segmentation model to annotate nine lesion types before training the algorithm. …”
    Get full text
    Article
  17. 457

    Breast mass lesion area detection method based on an improved YOLOv8 model by Yihua Lan, Yingjie Lv, Jiashu Xu, Yingqi Zhang, Yanhong Zhang

    Published 2024-10-01
    “…These improvements provide a more efficient and accurate tool for clinical breast cancer screening and lay the foundation for subsequent studies. …”
    Get full text
    Article
  18. 458

    Model OLD0: A Physical Parameterization for Clear-Sky Downward Longwave Radiation by Juan Carlos Ceballos, Diego Pereira Enoré, Jaidete Monteiro de Souza, Francisco Luiz Leitão de Mesquita

    Published 2025-01-01
    “…In contrast, other widely used algorithms typically exhibit |MBEs| ranging from 8.1 to 15.9 W.m-2.…”
    Get full text
    Article
  19. 459

    LatentDE: latent-based directed evolution for protein sequence design by Thanh V T Tran, Nhat Khang Ngo, Viet Thanh Duy Nguyen, Truong-Son Hy

    Published 2025-01-01
    “…To mitigate this extensive procedure, recent advancements in machine learning-guided methodologies center around the establishment of a surrogate sequence-function model. In this paper, we propose latent-based DE (LDE), an evolutionary algorithm designed to prioritize the exploration of high-fitness mutants in the latent space. …”
    Get full text
    Article
  20. 460

    Intelligence model-driven multi-stress adaptive reliability enhancement testing technology by Shouqing Huang, Beichen He, Jing Wang, Xiaoyang Li, Rui Kang, Fangyong Li

    Published 2025-06-01
    “…In addition, we propose a three-factor step-by-step screening algorithm and scoring model to determine the optimal sequential test points. …”
    Get full text
    Article