Showing 521 - 540 results of 1,436 for search '((((((mode OR model) OR more) OR more) OR (more OR more)) OR more) OR made) screening algorithm', query time: 0.34s Refine Results
  1. 521

    The modeling of two-dimensional vortex flows in a cylindrical channel using parallel calculations on a supercomputer by I. G. Lebo, I. V. Obruchev

    Published 2022-03-01
    “…The methods of mathematical modeling were used. A parallel algorithm for solving two-dimensional equations of gas dynamics in cylindrical coordinates (r, z, t) was developed and a new version of the NUTCY_ps program created. …”
    Get full text
    Article
  2. 522
  3. 523

    TAL-SRX: an intelligent typing evaluation method for KASP primers based on multi-model fusion by Xiaojing Chen, Xiaojing Chen, Jingchao Fan, Jingchao Fan, Shen Yan, Longyu Huang, Longyu Huang, Longyu Huang, Guomin Zhou, Guomin Zhou, Jianhua Zhang, Jianhua Zhang

    Published 2025-02-01
    “…To address the above problems, we proposed a typing evaluation method for KASP primers by integrating deep learning and traditional machine learning algorithms, called TAL-SRX. First, three algorithms are used to optimize the performance of each model in the Stacking framework respectively, and five-fold cross-validation is used to enhance stability. …”
    Get full text
    Article
  4. 524

    An mRNA Vaccine for Herpes Zoster and Its Efficacy Evaluation in Naïve/Primed Murine Models by Linglei Jiang, Wenshuo Zhou, Fei Liu, Wenhui Li, Yan Xu, Zhenwei Liang, Man Cao, Li Hou, Pengxuan Liu, Feifei Wu, Aijun Shen, Zhiyuan Zhang, Xiaodi Zhang, Haibo Zhao, Xinping Pan, Tengjie Wu, William Jia, Yuntao Zhang

    Published 2025-03-01
    “…<b>Methods:</b> Various mRNA constructs were designed based on intracellular organelle-targeting strategies and AI algorithm-guided high-throughput automation platform screening and were then synthesized by in vitro transcription and encapsulated with four-component lipid nanoparticles (LNPs). …”
    Get full text
    Article
  5. 525
  6. 526

    An XGBoost-SHAP Model for Energy Demand Prediction With Boruta&#x2013;Lasso Feature Selection by Yiwen Wang, Weibin Cheng, Yuting Jin, Jifei Li, Yantian Yang, Shaobing Hu

    Published 2025-01-01
    “…This study proposes an interpretable ML framework for energy demand prediction based on the Boruta-Lasso two-stage feature selection model, extreme gradient boosting (XGBoost) regression model, grid search optimization algorithm, and Shapley additive explanations (SHAP) algorithm. …”
    Get full text
    Article
  7. 527

    Molecular biomarkers in salivary diagnostic materials: Point-of-Care solutions — PoC-Diagnostics and -Testing by Ziyad S. Haidar

    Published 2025-02-01
    “…Recent advancements in nanomaterials and fabrication techniques, coupled with emerging computational approaches such as artificial intelligence (AI), machine learning, and deep learning, have revolutionized high-throughput screening and laboratory automation. AI-driven algorithms now process and analyze salivary proteomic data with remarkable accuracy, identifying patterns and biomarkers associated with diseases such as oral cancer at an early stage. …”
    Get full text
    Article
  8. 528

    Advancing Precision Medicine for Hypertensive Nephropathy: A Novel Prognostic Model Incorporating Pathological Indicators by Yunlong Qin, Jin Zhao, Yan Xing, Zixian Yu, Panpan Liu, Yuwei Wang, Anjing Wang, Yueqing Hui, Wei Zhao, Mei Han, Meng Liu, Xiaoxuan Ning, Shiren Sun

    Published 2025-01-01
    “…RSF and Cox regression were used to establish a renal prognosis prediction model based on the factors screened by the RSF algorithm. …”
    Get full text
    Article
  9. 529

    A Small-Sample Scenario Optimization Scheduling Method Based on Multidimensional Data Expansion by Yaoxian Liu, Kaixin Zhang, Yue Sun, Jingwen Chen, Junshuo Chen

    Published 2025-06-01
    “…Firstly, based on spatial correlation, the daily power curves of PV power plants with measured power are screened, and the meteorological similarity is calculated using multicore maximum mean difference (MK-MMD) to generate new energy output historical data of the target distributed PV system through the capacity conversion method; secondly, based on the existing daily load data of different types, the load historical data are generated using the stochastic and simultaneous sampling methods to construct the full historical dataset; subsequently, for the sample imbalance problem in the small-sample scenario, an oversampling method is used to enhance the data for the scarce samples, and the XGBoost PV output prediction model is established; finally, the optimal scheduling model is transformed into a Markovian decision-making process, which is solved by using the Deep Deterministic Policy Gradient (DDPG) algorithm. …”
    Get full text
    Article
  10. 530

    Short-term Wind Power Forecasting Based on BWO‒VMD and TCN‒BiGRU by LU Jing, ZHANG Yanru, WANG Rui

    Published 2025-05-01
    “…Given the instability and high volatility of wind power generation, this study proposes a short-term wind power prediction method based on BWO‒VMD and TCN‒BiGRU to improve the accuracy of wind power prediction and better support the energy transition under the “dual carbon” strategy.MethodsA short-term wind power generation prediction model based on the beluga whale optimization (BWO) algorithm, variational mode de-composition (VMD), temporal convolutional network (TCN), and bidirectional gated recurrent unit (BiGRU) was carefully proposed to improve the prediction accuracy of wind power generation, particularly considering its inherent instability and high volatility. …”
    Get full text
    Article
  11. 531

    Comparative Analysis of Osteoarthritis Therapeutics: A Justification for Harnessing Retrospective Strategies via an Inverted Pyramid Model Approach by Quinn T. Ehlen, Jacob Jahn, Ryan C. Rizk, Thomas M. Best

    Published 2024-10-01
    “…In comparison to the prospective approach, the retrospective strategy is likely more cost-effective, more widely applicable, and does not necessitate thorough and invasive genetic screening. …”
    Get full text
    Article
  12. 532

    A Novel Strategy Coupling Optimised Sampling with Heterogeneous Ensemble Machine-Learning to Predict Landslide Susceptibility by Yongxing Lu, Honggen Xu, Can Wang, Guanxi Yan, Zhitao Huo, Zuwu Peng, Bo Liu, Chong Xu

    Published 2024-10-01
    “…The stacking ensemble machine-learning model outperformed those three baseline models. Notably, the accuracy of the hybrid OS–Stacking model is most promising, up to 97.1%. …”
    Get full text
    Article
  13. 533

    Integrated multi-omics analysis and predictive modeling of heart failure using sepsis-related gene signature. by Yiping Lang, Tianyu Liang, Fei Li

    Published 2025-01-01
    “…<h4>Conclusion</h4>The model constructed through sepsis-related characteristic genes provides a highly advantageous method for predicting HF, and the characteristic genes we have screened may be potential biomarkers for predicting HF. …”
    Get full text
    Article
  14. 534

    Development of an Efficient and Generalized MTSCAM Model to Predict Liquid Chromatography Retention Times of Organic Compounds by Mengdie Fan, Chenhui Sang, Hua Li, Yue Wei, Bin Zhang, Yang Xing, Jing Zhang, Jie Yin, Wei An, Bing Shao

    Published 2025-01-01
    “…The results demonstrate that this model achieves an R2 of 0.98 and an average prediction error of 23 s, outperforming currently published models. …”
    Get full text
    Article
  15. 535

    RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks. by Souvik Seal, Qunhua Li, Elle Butler Basner, Laura M Saba, Katerina Kechris

    Published 2023-01-01
    “…We use a more efficient algorithm in the iterative steps compared to CFGL, enabling faster computation with complexity of O(p2K) and making it easily generalizable for more than three conditions. …”
    Get full text
    Article
  16. 536

    Risk Prediction of Liver Injury in Pediatric Tuberculosis Treatment: Development of an Automated Machine Learning Model by Zeng Y, Lu H, Li S, Shi QZ, Liu L, Gong YQ, Yan P

    Published 2025-01-01
    “…After the features were screened by univariate risk factor analysis, AutoML technology was used to establish predictive models. …”
    Get full text
    Article
  17. 537

    Development of a deep learning model for automated detection of calcium pyrophosphate deposition in hand radiographs by Thomas Hügle, Elisabeth Rosoux, Guillaume Fahrni, Deborah Markham, Tobias Manigold, Fabio Becce

    Published 2024-10-01
    “…The algorithm could be used to screen larger OA or RA databases or electronic medical records for CPPD cases. …”
    Get full text
    Article
  18. 538

    Identification of the Optimal Model for the Prediction of Diabetic Retinopathy in Chinese Rural Population: Handan Eye Study by Shanshan Jin, Xu Zhang, Hanruo Liu, Jie Hao, Kai Cao, Caixia Lin, Mayinuer Yusufu, Na Hu, Ailian Hu, Ningli Wang

    Published 2022-01-01
    “…To identify an optimal model for diabetic retinopathy (DR) prediction in Chinese rural population by establishing and comparing different algorithms based on the data from Handan Eye Study (HES). …”
    Get full text
    Article
  19. 539

    Detection of Hepatocellular Carcinoma Using Optimized miRNA Combinations and Interpretable Machine Learning Models by Zhengwu Long, Lisheng Zhang

    Published 2025-01-01
    “…Early screening to improve the survival rate of hepatocellular carcinoma (HCC) patients remains a critical clinical challenge. …”
    Get full text
    Article
  20. 540

    Development and validation of a risk prediction model for depression in patients with chronic obstructive pulmonary disease by Tong Feng, PeiPei Li, Ran Duan, Zhi Jin

    Published 2025-07-01
    “…Objective This study aimed to develop a machine learning-based model to predict depression risk in COPD patients, utilizing interpretable features from clinical and demographic data to support early intervention. …”
    Get full text
    Article