Showing 501 - 520 results of 1,629 for search '"semantics"', query time: 0.05s Refine Results
  1. 501

    The Theory and Applications of Hölder Widths by Man Lu, Peixin Ye

    Published 2024-12-01
    “…Then, we investigate the relationship between Hölder widths and other widths, showing that some Hölder widths are essentially smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>-Kolmogorov widths and linear widths. …”
    Get full text
    Article
  2. 502

    On the Fractional Dynamics of Kinks in Sine-Gordon Models by Tassos Bountis, Julia Cantisán, Jesús Cuevas-Maraver, Jorge Eduardo Macías-Díaz, Panayotis G. Kevrekidis

    Published 2025-01-01
    “…In particular, we modified the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the temporal derivative to that of a Caputo fractional type and found that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>β</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, this imposes a dissipative dynamical behavior on the coherent structures. …”
    Get full text
    Article
  3. 503

    Incoherency Problems in a Combination of Description Logics and Rules by Shasha Huang, Jing Hao, Dang Luo

    Published 2014-01-01
    “…At last, we investigate the relationship between suspicious semantics and paraconsistent semantics.…”
    Get full text
    Article
  4. 504

    Solutions of Cauchy Problems for the Caudrey–Dodd–Gibbon–Kotera–Sawada Equation in Three Spatial and Two Temporal Dimensions by Yufeng Zhang, Linlin Gui

    Published 2024-12-01
    “…Finally, the solutions of Cauchy problems for the CDGKS equation in three spatial and two temporal dimensions are constructed by introducing a novel nonlocal <i>d</i>-bar formalism, in which several new long derivative operators, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>x</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>y</mi></msub></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>t</mi></msub></semantics></math></inline-formula>, are constructed for the study of the initial value problem for the CDGKS equation. …”
    Get full text
    Article
  5. 505

    The Axiomatic Characterization of the Grey Shapley Value by Mehmet Gençtürk, Mahmut Sami Öztürk, Osman Palancı

    Published 2025-01-01
    “…In this study, the grey Shapley value is characterized by the following axioms: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>-gain loss, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>-null player, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>-differential marginality. …”
    Get full text
    Article
  6. 506

    Seasonal Mathematical Model of Salmonellosis Transmission and the Role of Contaminated Environments and Food Products by Mohammed H. Alharbi, Fawaz K. Alalhareth, Mahmoud A. Ibrahim

    Published 2025-01-01
    “…Further simulations examined the dynamics of disease extinction and persistence based on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">R</mi><mn>0</mn></msub></semantics></math></inline-formula>. …”
    Get full text
    Article
  7. 507

    Prospects for the Use of Quasi-Mersen Numbers in the Design of Parallel-Serial Processors by Aruzhan Kadyrzhan, Kaisarali Kadyrzhan, Akhat Bakirov, Ibragim Suleimenov

    Published 2025-01-01
    “…Such a set of prime numbers satisfies the criterion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>p</mi><mn>1</mn></msub><msub><mi>p</mi><mn>2</mn></msub><msub><mi>p</mi><mn>3</mn></msub><msub><mi>p</mi><mn>4</mn></msub><mo>+</mo><mn>1</mn><mo>=</mo><mi>P</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> is also a prime number. …”
    Get full text
    Article
  8. 508

    An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets by Khairul Habib Alam, Yumnam Rohen, Anita Tomar, Naeem Saleem, Maggie Aphane, Asima Razzaque

    Published 2025-01-01
    “…Moreover, we apply <i>s</i>-convexity to the iteration procedure to construct orbits under convexity conditions, and we present a theorem that determines the condition when a sequence diverges to infinity, known as the escape criterion, for the transcendental sine function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(</mo><msup><mi>u</mi><mi>m</mi></msup><mo>)</mo><mo>−</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article
  9. 509

    On the Evidence of Dynamical Dark Energy by Qing Gao, Zhiqian Peng, Shengqing Gao, Yungui Gong

    Published 2024-12-01
    “…While the DESI BAO data slightly tightens the constraints on model parameters and increases the tension between the Chevallier–Polarski–Linder (CPL) model and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula>CDM model, we find that the influence of DESI BAO data on the constraint of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula> is small in the SSLCPL model. …”
    Get full text
    Article
  10. 510

    Towards an Automated Design Evaluation Method for Wire Arc Additive Manufacturing by Johannes Pusicha, Henrik Stromberg, Markus Quanz, Armin Lohrengel

    Published 2025-01-01
    “…An angle of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>65</mn><mo>°</mo></msup></semantics></math></inline-formula> is identified as an effective separation limit. …”
    Get full text
    Article
  11. 511

    Impact of Key DMD Parameters on Modal Analysis of High-Reynolds-Number Flow Around an Idealized Ground Vehicle by Hamed Ahani, Mesbah Uddin

    Published 2025-01-01
    “…Key findings show that a 90% contribution to the pressure drag comes from modes with a frequency of less than 26 Hz (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>t</mi></mrow></semantics></math></inline-formula> = 0.187), while the friction drag requires 84 Hz (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>t</mi></mrow></semantics></math></inline-formula> = 0.604) for similar energy capture. …”
    Get full text
    Article
  12. 512

    Supervised vs. Self-Managed Exercise Therapy for Improving Shoulder Function After Traumatic Dislocation and Sprain: A Systematic Review and Meta-Analysis by Daniel Koska, Robert Zetzsche, Tobias A. Mayer, Christian Maiwald

    Published 2025-01-01
    “…Both treatment modes showed similar pooled effects (standardized mean difference, SMD<sub>conservative</sub>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.35</mn></mrow></semantics></math></inline-formula>, 95% CI [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>1.39</mn></mrow></semantics></math></inline-formula>, 0.69]; SMD<sub>post-surgical</sub>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.23</mn></mrow></semantics></math></inline-formula>, 95% CI [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>1.21</mn></mrow></semantics></math></inline-formula>, 0.75]), with a marginal improvement in shoulder function favoring supervised therapy. …”
    Get full text
    Article
  13. 513

    Synthesis of Nanocrystalline Mn-Doped Bi<sub>2</sub>Te<sub>3</sub> Thin Films via Magnetron Sputtering by Joshua Bibby, Angadjit Singh, Emily Heppell, Jack Bollard, Barat Achinuq, Sarah J. Haigh, Gerrit van der Laan, Thorsten Hesjedal

    Published 2025-01-01
    “…This study reports the structural and magnetic properties of Mn-doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> thin films grown by magnetron sputtering. …”
    Get full text
    Article
  14. 514

    Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order by Takao Komatsu, B. Sury

    Published 2025-01-01
    “…</mo></mrow></semantics></math></inline-formula> Recently, Mneimneh proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">D</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article
  15. 515

    Optimization of the Screw Conveyor Device Based on a GA-BP Neural Network by Qiang Guo, Yunpeng Zhuang, Houzhuo Xu, Wei Li, Haitao Li, Zhidong Wu

    Published 2025-01-01
    “…Specifically, when the outer diameter of the spiral for screw conveyance in the straw baler was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="normal">D</mi><mo>=</mo><mn>320</mn><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>, the pitch was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="normal">S</mi><mo>=</mo><mn>200</mn><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>, and the rotational speed of the pickup shaft was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>138</mn><mo> </mo><mi>r</mi><mo>/</mo><mi>min</mi></mrow></semantics></math></inline-formula>, the straw baler could achieve the maximum conveying capacity and the minimum power consumption. …”
    Get full text
    Article
  16. 516

    Emergence of Self-Identity in Artificial Intelligence: A Mathematical Framework and Empirical Study with Generative Large Language Models by Minhyeok Lee

    Published 2025-01-01
    “…Our framework posits that self-identity emerges from two mathematically quantifiable conditions: the existence of a connected continuum of memories <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>⊆</mo><mi mathvariant="script">M</mi></mrow></semantics></math></inline-formula> in a metric space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">M</mi><mo>,</mo><msub><mi>d</mi><mi mathvariant="script">M</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, and a continuous mapping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>:</mo><mi mathvariant="script">M</mi><mo>→</mo><mi mathvariant="script">S</mi></mrow></semantics></math></inline-formula> that maintains consistent self-recognition across this continuum, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">S</mi><mo>,</mo><msub><mi>d</mi><mi mathvariant="script">S</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> represents the metric space of possible self-identities. …”
    Get full text
    Article
  17. 517

    A Pilot Study on the Age-Dependent, Biomechanical Properties of Longitudinal Ligaments in the Human Cervical Spine by Narendra Singh, Ana Trajkovski, Jovan Trajkovski, Robert Kunc, Jose Felix Rodriguez Matas

    Published 2025-01-01
    “…The investigation concentrated on the effects of age on four mechanical parameters of the uniaxial stress–stretch curve: initial tangent stiffness (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula>), maximum tangent stiffness (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula>), ultimate stress (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>) and ultimate stretch (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>). …”
    Get full text
    Article
  18. 518

    Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation by Haoran Wang, Gengshen Wu, Yi Liu

    Published 2025-01-01
    “…For instance, in evaluations on the CHAOS T2SPIR dataset, EGAUNet achieves approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher performance on the Jaccard metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher on the Dice metric, and nearly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher on the precision metric in comparison to advanced networks such as Swin-Unet and TransUnet.…”
    Get full text
    Article
  19. 519

    Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks by Hening Wu, Ya-Ping Li

    Published 2024-12-01
    “…The thermodynamics effect is modeled with a thermal relaxation timescale using a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-cooling prescription. …”
    Get full text
    Article
  20. 520

    Optimization of Shear-Thickening Polishing Parameters for Optical Glass Based on Grey Relational Analysis by Yunxiao Han, Yangsi Yang, Binghai Lyu, Wei Hang, Xu Wang, Julong Yuan

    Published 2025-01-01
    “…Sixteen orthogonal experiments were conducted to assess the effects of polishing speed (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi></mrow></semantics></math></inline-formula>), angle (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi></mrow></semantics></math></inline-formula>), and slurry concentration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi></mrow></semantics></math></inline-formula>) on the material removal rate (MRR) and surface roughness (Ra). …”
    Get full text
    Article