Showing 441 - 460 results of 1,629 for search '"semantics"', query time: 0.07s Refine Results
  1. 441
  2. 442

    Impact of Addition of a Newtonian Solvent to a Giesekus Fluid: Analytical Determination of Flow Rate in Plane Laminar Motion by Irene Daprà, Giambattista Scarpi, Vittorio Di Federico

    Published 2024-12-01
    “…It is strongly dependent on the viscosity ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>ε</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>), the dimensionless mobility parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo> </mo></mrow></semantics></math></inline-formula>(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>) and the Deborah number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>e</mi></mrow></semantics></math></inline-formula>, the dimensionless driving pressure gradient. …”
    Get full text
    Article
  3. 443

    Genetic Stability and Inbreeding in a Synthetic Maize Variety Based on a Finite Model by Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, Aureliano Peña-Lomelí, Clemente Villanueva-Verduzco, Denise Arellano-Suarez

    Published 2025-01-01
    “…A synthetic variety (SV) of maize may not become stable if the sample size representing each parental line (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi></mrow></semantics></math></inline-formula>) is small. …”
    Get full text
    Article
  4. 444

    Factor Rings with Algebraic Identities via Generalized Derivations by Ali Yahya Hummdi, Zakia Z. Al-Amery, Radwan M. Al-omary

    Published 2024-12-01
    “…The current article focuses on studying the behavior of a ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mo>/</mo><mo>Π</mo></mrow></semantics></math></inline-formula> when <i>ℜ</i> admits generalized derivations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> with associated derivations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, respectively. …”
    Get full text
    Article
  5. 445

    CO<sub>2</sub>@C<sub>84</sub>: DFT Calculations of Structure and Energetics by Zdeněk Slanina, Filip Uhlík, Takeshi Akasaka, Xing Lu, Ludwik Adamowicz

    Published 2025-01-01
    “…Encapsulations of carbon dioxide into <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mn>2</mn></msub></semantics></math></inline-formula>(22)-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="normal">C</mi><mn>84</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mn>2</mn><mi>d</mi></mrow></msub></semantics></math></inline-formula>(23)-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mn>84</mn></msub></mrow></semantics></math></inline-formula> fullerenes are evaluated. …”
    Get full text
    Article
  6. 446

    Co-Secure Domination Number in Some Graphs by Jiatong Cui, Tianhao Li, Jiayuan Zhang, Xiaodong Chen, Liming Xiong

    Published 2024-12-01
    “…</mo></mrow></semantics></math></inline-formula> If <i>S</i> is a dominating set of <i>G</i>, and for each vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> there is a neighbor of <i>u</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>,</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>v</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>u</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a dominating set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>,</mo></mrow></semantics></math></inline-formula> then <i>S</i> is a secure dominating set (SDS) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.…”
    Get full text
    Article
  7. 447

    Cantelli’s Bounds for Generalized Tail Inequalities by Nicola Apollonio

    Published 2025-01-01
    “…Let <i>X</i> be a centered random vector in a finite-dimensional real inner product space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>. …”
    Get full text
    Article
  8. 448

    Interior Peak Solutions for a Semilinear Dirichlet Problem by Hissah Alharbi, Hibah Alkhuzayyim, Mohamed Ben Ayed, Khalil El Mehdi

    Published 2025-01-01
    “…In this paper, we consider the semilinear Dirichlet problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow><mo>:</mo><mo>−</mo><mo>Δ</mo><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mi>u</mi><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mstyle><mo>−</mo><mi>ε</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> on ∂<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula> is a bounded regular domain in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> is a small positive parameter, and <i>V</i> is a non-constant positive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-function on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mo>Ω</mo><mo>¯</mo></mover></semantics></math></inline-formula>. …”
    Get full text
    Article
  9. 449

    On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices by Abeer M. Albalahi, Muhammad Rizwan, Akhlaq A. Bhatti, Ivan Gutman, Akbar Ali, Tariq Alraqad, Hicham Saber

    Published 2024-12-01
    “…This paper is mainly concerned with the study of two bond incident degree (BID) indices, namely the variable sum exdeg index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and the general zeroth-order Randić index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article
  10. 450

    An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi by Víctor Manuel Silva-García, Manuel Alejandro Cardona-López, Rolando Flores-Carapia

    Published 2025-01-01
    “…Numerous studies on the number pi (<inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>) explore its properties, including normality and applicability. …”
    Get full text
    Article
  11. 451

    The Laguerre Constellation of Classical Orthogonal Polynomials by Roberto S. Costas-Santos

    Published 2025-01-01
    “…A linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> is classical if there exist polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ψ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mfenced separators="" open="(" close=")"><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi mathvariant="bold">u</mi></mfenced><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi mathvariant="bold">u</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> is a certain differential, or difference, operator. …”
    Get full text
    Article
  12. 452

    The Singularity of the <i>K</i><sub>4</sub> Homeomorphic Graph by Haicheng Ma

    Published 2024-12-01
    “…Let <i>G</i> be a finite simple graph and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> be its adjacency matrix. …”
    Get full text
    Article
  13. 453

    Summatory Multiplicative Arithmetic Functions: Scaling and Renormalization by Leonid G. Fel

    Published 2025-01-01
    “…We consider a wide class of summatory functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mfenced separators="" open="{" close="}"><mi>f</mi><mo>;</mo><mi>N</mi><mo>,</mo><msup><mi>p</mi><mi>m</mi></msup></mfenced><mo>=</mo><msub><mo>∑</mo><mrow><mi>k</mi><mo>≤</mo><mi>N</mi></mrow></msub><mi>f</mi><mfenced separators="" open="(" close=")"><msup><mi>p</mi><mi>m</mi></msup><mi>k</mi></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub><mo>∪</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> associated with the multiplicative arithmetic functions <i>f</i> of a scaled variable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>∈</mo><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>, where <i>p</i> is a prime number. …”
    Get full text
    Article
  14. 454

    Thurstonian Scaling for Sensory Discrimination Methods by Jian Bi, Carla Kuesten

    Published 2025-01-01
    “…., Thurstonian discriminal distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>d</mi><mo>′</mo></msup></semantics></math></inline-formula>, can be used as a sensory measurement index to measure and monitor food sensory difference/similarity between test and control samples due to potential food contamination. …”
    Get full text
    Article
  15. 455

    On the Exponential Atom-Bond Connectivity Index of Graphs by Kinkar Chandra Das

    Published 2025-01-01
    “…We present several relations between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>e</mi><mi mathvariant="script">ABC</mi></msup><mrow><mo>(</mo><mo>Υ</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mo>(</mo><mo>Υ</mo><mo>)</mo></mrow></semantics></math></inline-formula> of graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Υ</mo></semantics></math></inline-formula>. …”
    Get full text
    Article
  16. 456

    Subdiffusion Equation with Fractional Caputo Time Derivative with Respect to Another Function in Modeling Superdiffusion by Tadeusz Kosztołowicz

    Published 2025-01-01
    “…Superdiffusion is usually defined as a random walk process of a molecule, in which the time evolution of the mean-squared displacement, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>σ</mi><mn>2</mn></msup></semantics></math></inline-formula>, of the molecule is a power function of time, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>σ</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∼</mo><msup><mi>t</mi><mrow><mn>2</mn><mo>/</mo><mi>γ</mi></mrow></msup></mrow></semantics></math></inline-formula>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article
  17. 457

    The Edge Odd Graceful Labeling of Water Wheel Graphs by Mohammed Aljohani, Salama Nagy Daoud

    Published 2024-12-01
    “…A graph, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is edge odd graceful if it possesses edge odd graceful labeling. …”
    Get full text
    Article
  18. 458

    Partitioning Functional of a Class of Convex Bodies by Xinling Zhang

    Published 2025-01-01
    “…For each <i>n</i>-dimensional real Banach space <i>X</i>, each positive integer <i>m</i>, and each bounded set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> with diameter greater than 0, let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mi>X</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the infimum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> can be represented as the union of <i>m</i> subsets of <i>A</i>, whose diameters are not greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula> times the diameter of <i>A</i>. …”
    Get full text
    Article
  19. 459

    Mapping the Λ<sub>s</sub>CDM Scenario to <i>f</i>(<i>T</i>) Modified Gravity: Effects on Structure Growth Rate by Mateus S. Souza, Ana M. Barcelos, Rafael C. Nunes, Özgür Akarsu, Suresh Kumar

    Published 2024-12-01
    “…The concept of a rapidly sign-switching cosmological constant, interpreted as a mirror AdS-dS transition in the late universe and known as the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Λ</mi><mi mathvariant="normal">s</mi></msub></semantics></math></inline-formula>CDM, has significantly improved the fit to observational data, offering a promising framework for alleviating major cosmological tensions such as the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mn>8</mn></msub></semantics></math></inline-formula> tensions. …”
    Get full text
    Article
  20. 460

    Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species by Na Shi, Xin Wu, Zhaohai Ma

    Published 2025-01-01
    “…For planar traveling waves with speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>></mo><msup><mi>c</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, we establish their exponential stability in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mo>∞</mo></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, which is expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>t</mi><mrow><mo>−</mo><mstyle><mfrac><mi>n</mi><mn>2</mn></mfrac></mstyle></mrow></msup><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><msub><mi>ε</mi><mi>τ</mi></msub><mi>σ</mi><mi>t</mi></mrow></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is a constant and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>τ</mi></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> depends on the time delay <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> as a decreasing function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>τ</mi></msub><mo>=</mo><mi>ε</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article