Showing 41 - 60 results of 232 for search '"dice"', query time: 0.04s Refine Results
  1. 41

    Improving spleen segmentation in ultrasound images using a hybrid deep learning framework by Ali Karimi, Javad Seraj, Fatemeh Mirzadeh Sarcheshmeh, Kasra Fazli, Amirali Seraj, Parisa Eslami, Mohamadreza Khanmohamadi, Helia Sajjadian Moosavi, Hadi Ghattan Kashani, Abdoulreza Sajjadian Moosavi, Masoud Shariat Panahi

    Published 2025-01-01
    “…Specifically, our approach achieved a mean Intersection over Union (mIoU) of 94.17% and a mean Dice (mDice) score of 96.82%, surpassing models such as Splenomegaly Segmentation Network (SSNet), U-Net, and Variational autoencoder based methods. …”
    Get full text
    Article
  2. 42

    Steel surface defect detection and segmentation using deep neural networks by Sara Ashrafi, Sobhan Teymouri, Sepideh Etaati, Javad Khoramdel, Yasamin Borhani, Esmaeil Najafi

    Published 2025-03-01
    “…Based on the obtained results, the U-Net model with pre-trained backbones achieves a Dice Similarity Coefficient of 72%, outperforming existing methods. …”
    Get full text
    Article
  3. 43
  4. 44

    Accuracy of an articulated head-and-neck motion model using deep learning-based instance segmentation of skeletal bones in CT scans for image registration in radiotherapy by Alexandra Walter, Cornelius J. Bauer, Ama Katseena Yawson, Philipp Hoegen-Saßmannshausen, Sebastian Adeberg, Jürgen Debus, Oliver Jäkel, Martin Frank, Kristina Giske

    Published 2025-12-01
    “…Both sets of segmentations are evaluated using DICE, Hausdorff Distance and surface DICE. We investigate their impact on the build-up of the biomechanical articulated skeleton model by deviations in joint positioning and CT-CT registration accuracy using target registration error (TRE). …”
    Get full text
    Article
  5. 45

    Machine Learning-Based Normal White Blood Cell Multi-Classification Optimization by Taeyeon Gil, Sukjun Lee, Onseok Lee

    Published 2025-01-01
    “…The nucleus showed high segmentation performance with an average accuracy of 98.58% and a Dice coefficient of 0.9233, whereas the cells achieved an average accuracy of 99.47% and a Dice coefficient of 0.9324. …”
    Get full text
    Article
  6. 46

    An Attention-Based Residual U-Net for Tumour Segmentation Using Multi-Modal MRI Brain Images by Najme Zehra Naqvi, K. R. Seeja

    Published 2025-01-01
    “…For BraTS 2020 it achieved Dice Coefficient of 0.9978, 0.9378 and 0.9478 for WT (Whole tumour), TC (Tumour core), and ET (Enhancing Tumour) respectively and for BraTS 2018 it achieved Dice Coefficient 98.32, 93.32 and 92.32 for WT (Whole tumour), TC (Tumour core), and ET (Enhancing Tumour) respectively.…”
    Get full text
    Article
  7. 47

    A Novel Network for Choroidal Segmentation Based on Enhanced Boundary Information by Wenbo Huang, Chaofan Qu, Yang Yan

    Published 2025-01-01
    “…The BENet architecture achieved a Dice coefficient of 95.24%, a Hausdorff distance of 2.68, and an accuracy of 99.12%. …”
    Get full text
    Article
  8. 48

    Alasdair MacIntyre: relatividad conceptual, tomismo y liberalismo by Carlos Isler S.

    Published 2011-01-01
    “…Se expone esta teoría y se analiza su compatibilidad con el tomismo, tradición a la que MacIntyre dice pertenecer, y con el liberalismo, tradición a la que critica con vigor.…”
    Get full text
    Article
  9. 49

    Sacar la voz by Valentina Bulo

    Published 2018-06-01
    “… Efectivamente para sacar la voz debemos estar dispuestos de algún modo, debemos situarnos, pararnos en el mundo de una manera tal que la voz salga casi como evaporación, soplo, como la larga expiración cuando nuestros pulmones se desinflan, como me dice la estudiante de teatro, para sacar la voz hay que tener el cuerpo listo, preparado, con un tono muscular, una respiración determinada. …”
    Get full text
    Article
  10. 50

    LUneXt: Simple and Efficient U-shaped Network Design for Medical Image Segmentation with Nonlinear Activation by Guanghong Deng, Bing Yu, Wenlong Jing, Yong Li, Xiaodan Zhao

    Published 2024-01-01
    “…The experimental IoU value of the International Skin Imaging Collaboration (ISIC 2018) data set reached 82.95%, and the Dice value reached 90.50%. The single inference speed reached 842.58[Formula: see text]ms. …”
    Get full text
    Article
  11. 51

    A laboratory feasibility study using a computer algorithm for anastomosis segmentation of epicardial ultrasonography images from distal coronary artery bypass anastomoses by Alex Skovsbo Jørgensen, Martin Siemienski Andersen, Lasse Riis Østergaard, Samuel Emil Schmidt, Dorte Nøhr, Jan Jesper Andreasen

    Published 2025-01-01
    “…Results The number of dimensions of anastomotic vessel structures that are relevant for stenosis quantification and the Dice coefficient were 0.888 between the automatic and manual segmentations. …”
    Get full text
    Article
  12. 52

    Automatic segmentation of white matter lesions on multi-parametric MRI: convolutional neural network versus vision transformer by Yun-Ting Chen, Yan-Cheng Huang, Hsiu-Ling Chen, Hsin-Chih Lo, Pei-Chin Chen, Chiun-Chieh Yu, Yi-Chin Tu, Tyng-Luh Liu, Wei-Che Lin

    Published 2025-01-01
    “…Four metrics were used for evaluation: Dice similarity coefficient, lesion segmentation, lesion F1-Score, and lesion sensitivity. …”
    Get full text
    Article
  13. 53

    Multiscale attention network via topology learning for cerebral vessel segmentation in angiography images by Tao Han, Junchen Xiong, Tingyi Lin, Tao An, Cheng Wang, Jianjun Zhu, Zhongliang Li, Ligong Lu, Yi Zhang, Gao-Jun Teng

    Published 2024-06-01
    “…To maintain the topological connectivity of vessel segmentation, we introduced the clDice loss function to enforce skeleton connectivity of vessel segmentation. …”
    Get full text
    Article
  14. 54

    A Hybrid Efficient U-Net Framework for Detection of Anterior Belly of the Digastric Muscle on Ultrasonography by Sule Erdem, Suheda Erdem, Muammer Turkoglu, Abdulkadir Sengur, Nebras M. Sobahi

    Published 2025-01-01
    “…Combo Loss (a combination of Binary Cross-Entropy and Dice Loss) was used to train the model and segmentation metrics such as F1-score, Intersection over Union (IoU) and Dice Co-efficient were used to evaluate performance. …”
    Get full text
    Article
  15. 55

    Text similarity detection method based on NLP by Xiaoli DAI, Shifeng LIU, Daqing GONG

    Published 2021-10-01
    “…Current text similarity detection methods that ignore document structure information and lack semantic relevance.To solve these problems, a text-oriented similarity detection method was proposed.First, analytic hierarchy process (AHP) was used to calculate word position weight to extract feature words.Second, the Pearson correlation coefficient was used to measure semantic correlation between words which was the weight of generalized Dice coefficient to calculate similarity.Experimental results show that the proposed method can improve the precision of feature word extraction and the accuracy of similarity calculation results.…”
    Get full text
    Article
  16. 56
  17. 57

    Making Holes in the Second Symmetric Products of Dendrites and Some Fans by José G. Anaya, David Maya, Fernando Orozco-Zitli

    Published 2012-01-01
    “…Sea X un continuo métrico tal que el segundo producto simétrico de X, F2(X) es unicoherente. Sea A E F2(X), A se dice que hace un hoyo a F2(X), si F2(X) - {A} no es unicoherente. …”
    Get full text
    Article
  18. 58
  19. 59
  20. 60

    La LOMCE. ¿Una ley más de educación? by José Gimeno Sacristán

    Published 2014-01-01
    “…El Partido Popular, que ha mezclado en el texto las reivindicaciones de los grupos ideológicos que apoyan las políticas conservadoras, muestra importantes contradicciones entre las propuestas que dice que va a desarrollar y las que verdaderamente aplica en los territorios en los que gobierna.…”
    Get full text
    Article