-
321
New Wavelets Collocation Method for Solving Second-Order Multipoint Boundary Value Problems Using Chebyshev Polynomials of Third and Fourth Kinds
Published 2013-01-01“…This paper is concerned with introducing two wavelets collocation algorithms for solving linear and nonlinear multipoint boundary value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently solved. …”
Get full text
Article -
322
A method of calculation of specific conductivity tensor of a anisotropic media
Published 2005-12-01Subjects: Get full text
Article -
323
On the stationary vibrations of a rectangular plate subjected to stress prescribed partially at the circumference
Published 1991-01-01Subjects: Get full text
Article -
324
Twin Positive Solutions of a Nonlinear m-Point Boundary Value Problem for Third-Order p-Laplacian Dynamic Equations on Time Scales
Published 2008-01-01“…Several existence theorems of twin positive solutions are established for a nonlinear m-point boundary value problem of third-order p-Laplacian dynamic equations on time scales by using a fixed point theorem. …”
Get full text
Article -
325
General Linear Boundary Value Problem for the Second-Order Integro-Differential Loaded Equation with Boundary Conditions Containing Both Nonlocal and Global Terms
Published 2010-01-01“…Here, the boundary conditions corresponding with the boundary value problem contain both nonlocal and global terms.…”
Get full text
Article -
326
Existence and Uniqueness Results for a Class of Singular Fractional Boundary Value Problems with the p-Laplacian Operator via the Upper and Lower Solutions Approach
Published 2020-01-01“…In this paper, we study the existence and uniqueness of positive solutions to a class of multipoint boundary value problems for singular fractional differential equations with the p-Laplacian operator. …”
Get full text
Article -
327
On the numerical solution of two point boundary value problem for the Helmholtz type equation by finite difference method with non regular step length between nodes
Published 2021-03-01Subjects: “…Boundary Value Problem, Convergence of the Method, Cubic Order, Finite Difference Method, Nonuniform Step Length.…”
Get full text
Article -
328
Solution of the First Boundary-Value Problem for a System of Autonomous Second-Order Linear Partial Differential Equations of Parabolic Type with a Single Delay
Published 2012-01-01“…The first boundary-value problem for an autonomous second-order system of linear partial differential equations of parabolic type with a single delay is considered. …”
Get full text
Article -
329
Simulation-based high-speed elongational rheometer for Carreau-type materials
Published 2025-02-01Subjects: Get full text
Article -
330
Iterative Analysis of the Unique Positive Solution for a Class of Singular Nonlinear Boundary Value Problems Involving Two Types of Fractional Derivatives with p-Laplacian Operator
Published 2019-01-01“…This article is concerned with a class of singular nonlinear fractional boundary value problems with p-Laplacian operator, which contains Riemann–Liouville fractional derivative and Caputo fractional derivative. …”
Get full text
Article -
331
Stable difference scheme for a nonlocal boundary value heat conduction problem
Published 2018-12-01Subjects: Get full text
Article -
332
-
333
The Existence and Uniqueness of a New Boundary Value Problem (Type of Problem “E”) for Linear System Equations of the Mixed Hyperbolic-Elliptic Type in the Multivariate Dimension with the Changing Time Direction
Published 2015-01-01“…The existence and uniqueness of the boundary value problem for linear systems equations of the mixed hyperbolic-elliptic type in the multivariate domain with the changing time direction are studied. …”
Get full text
Article -
334
Analytical solution of problem of shielding low-frequency magnetic field by thin-walled cylindrical screen in presence of cylinder
Published 2021-09-01Subjects: “…boundary value problem…”
Get full text
Article -
335
-
336
General existence principles for nonlocal boundary value problems with <mml:math alttext="$PHI$"> <mml:mi>φ</mml:mi> </mml:math>-laplacian and their applications
Published 2006-01-01“…<p>The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form <mml:math alttext="$(phi(x'))'=f_1(t,x,x')+f_2(t,x,x')F_1x+f_3(t,x,x')F_2x$,$alpha(x)=0$"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>φ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math>, <mml:math alttext="$eta(x)=0$"> <mml:mi>β</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math>, where <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> satisfy local Carathéodory conditions on some <mml:math alttext="$[0,T]imesmathcal{D}_jsubset R^2$"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msub> <mml:mi>𝒟</mml:mi> <mml:mi>j</mml:mi> </mml:msub> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> are either regular or have singularities in their phase variables <mml:math alttext="$(j=1,2,3)$"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>, <mml:math alttext="$F_i: C^1[0,T] ightarrow C^0[0,T]$ $(i=1,2)$"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>, and <mml:math alttext="$alpha,eta:C^1[0,T] ightarrowR$"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>β</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:mi>ℝ</mml:mi> </mml:mrow> </mml:math> are continuous. …”
Get full text
Article -
337
Heat transfer between a fluid and a plate: multidimensional Laplace transformation methods
Published 1983-01-01Subjects: Get full text
Article -
338
A modified scheme to the multiple shooting method for BVPs
Published 2025-04-01Subjects: “…Boundary value problems…”
Get full text
Article -
339
The positivity of the differential operator generated by hyperbolic system of equations
Published 2023-12-01Subjects: Get full text
Article -
340
Novel exact solutions for PDEs with mixed boundary conditions
Published 2025-01-01Subjects: Get full text
Article