Showing 321 - 340 results of 629 for search '"boundary value problem"', query time: 0.08s Refine Results
  1. 321

    New Wavelets Collocation Method for Solving Second-Order Multipoint Boundary Value Problems Using Chebyshev Polynomials of Third and Fourth Kinds by W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri

    Published 2013-01-01
    “…This paper is concerned with introducing two wavelets collocation algorithms for solving linear and nonlinear multipoint boundary value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently solved. …”
    Get full text
    Article
  2. 322
  3. 323
  4. 324

    Twin Positive Solutions of a Nonlinear m-Point Boundary Value Problem for Third-Order p-Laplacian Dynamic Equations on Time Scales by Wei Han, Guang Zhang

    Published 2008-01-01
    “…Several existence theorems of twin positive solutions are established for a nonlinear m-point boundary value problem of third-order p-Laplacian dynamic equations on time scales by using a fixed point theorem. …”
    Get full text
    Article
  5. 325

    General Linear Boundary Value Problem for the Second-Order Integro-Differential Loaded Equation with Boundary Conditions Containing Both Nonlocal and Global Terms by M. R. Fatemi, N. A. Aliyev

    Published 2010-01-01
    “…Here, the boundary conditions corresponding with the boundary value problem contain both nonlocal and global terms.…”
    Get full text
    Article
  6. 326

    Existence and Uniqueness Results for a Class of Singular Fractional Boundary Value Problems with the p-Laplacian Operator via the Upper and Lower Solutions Approach by KumSong Jong, HuiChol Choi, KyongJun Jang, SunAe Pak

    Published 2020-01-01
    “…In this paper, we study the existence and uniqueness of positive solutions to a class of multipoint boundary value problems for singular fractional differential equations with the p-Laplacian operator. …”
    Get full text
    Article
  7. 327

    On the numerical solution of two point boundary value problem for the Helmholtz type equation by finite difference method with non regular step length between nodes by Pramod Pandey

    Published 2021-03-01
    Subjects: “…Boundary Value Problem, Convergence of the Method, Cubic Order, Finite Difference Method, Nonuniform Step Length.…”
    Get full text
    Article
  8. 328

    Solution of the First Boundary-Value Problem for a System of Autonomous Second-Order Linear Partial Differential Equations of Parabolic Type with a Single Delay by Josef Diblík, Denis Khusainov, Oleksandra Kukharenko, Zdeněk Svoboda

    Published 2012-01-01
    “…The first boundary-value problem for an autonomous second-order system of linear partial differential equations of parabolic type with a single delay is considered. …”
    Get full text
    Article
  9. 329
  10. 330

    Iterative Analysis of the Unique Positive Solution for a Class of Singular Nonlinear Boundary Value Problems Involving Two Types of Fractional Derivatives with p-Laplacian Operator by Fang Wang, Lishan Liu, Yonghong Wu, Yumei Zou

    Published 2019-01-01
    “…This article is concerned with a class of singular nonlinear fractional boundary value problems with p-Laplacian operator, which contains Riemann–Liouville fractional derivative and Caputo fractional derivative. …”
    Get full text
    Article
  11. 331
  12. 332
  13. 333

    The Existence and Uniqueness of a New Boundary Value Problem (Type of Problem “E”) for Linear System Equations of the Mixed Hyperbolic-Elliptic Type in the Multivariate Dimension with the Changing Time Direction by Mahammad A. Nurmammadov

    Published 2015-01-01
    “…The existence and uniqueness of the boundary value problem for linear systems equations of the mixed hyperbolic-elliptic type in the multivariate domain with the changing time direction are studied. …”
    Get full text
    Article
  14. 334
  15. 335
  16. 336

    General existence principles for nonlocal boundary value problems with <mml:math alttext="$PHI$"> <mml:mi>&#x03C6;</mml:mi> </mml:math>-laplacian and their applications

    Published 2006-01-01
    “…<p>The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form <mml:math alttext="$(phi(x'))'=f_1(t,x,x')+f_2(t,x,x')F_1x+f_3(t,x,x')F_2x$,$alpha(x)=0$"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x03C6;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B1;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math>, <mml:math alttext="$eta(x)=0$"> <mml:mi>&#x03B2;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math>, where <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> satisfy local Carathéodory conditions on some <mml:math alttext="$[0,T]imesmathcal{D}_jsubset R^2$"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x00D7;</mml:mo> <mml:msub> <mml:mi>&#x1D49F;</mml:mi> <mml:mi>j</mml:mi> </mml:msub> <mml:mo>&#x2282;</mml:mo> <mml:msup> <mml:mi>&#x211D;</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> are either regular or have singularities in their phase variables <mml:math alttext="$(j=1,2,3)$"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>, <mml:math alttext="$F_i: C^1[0,T] ightarrow C^0[0,T]$ $(i=1,2)$"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>, and <mml:math alttext="$alpha,eta:C^1[0,T] ightarrowR$"> <mml:mrow> <mml:mi>&#x03B1;</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B2;</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:mi>&#x211D;</mml:mi> </mml:mrow> </mml:math> are continuous. …”
    Get full text
    Article
  17. 337
  18. 338
  19. 339
  20. 340