Showing 21 - 26 results of 26 for search '"Ramanujan"', query time: 0.03s Refine Results
  1. 21

    Infinite Product Representation for the Szegö Kernel for an Annulus by Nuraddeen S. Gafai, Ali H. M. Murid, Nur H. A. A. Wahid

    Published 2022-01-01
    “…This leads to an infinite product representation through the application of Ramanujan’s sum. The infinite product clearly exhibits the unique zero of the Szegö kernel for an annulus. …”
    Get full text
    Article
  2. 22
  3. 23
  4. 24
  5. 25
  6. 26

    Summatory Multiplicative Arithmetic Functions: Scaling and Renormalization by Leonid G. Fel

    Published 2025-01-01
    “…We apply the derived formulas to a large number of basic summatory functions including the Euler <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> and Dedekind <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> totient functions, divisor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and prime divisor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> functions, the Ramanujan sum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>q</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and Ramanujan <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> Dirichlet series, and others.…”
    Get full text
    Article