Showing 4,521 - 4,531 results of 4,531 for search '"Q ', query time: 0.07s Refine Results
  1. 4521

    PBMCs gene expression predicts liver fibrosis regression after successful HCV therapy in HIV/HCV-coinfected patients by Ana Virseda-Berdices, Ana Virseda-Berdices, Óscar Brochado-Kith, Óscar Brochado-Kith, Juan Berenguer, Juan Berenguer, Juan Berenguer, Juan González-García, Juan González-García, Juan González-García, Leire Pérez-Latorre, Leire Pérez-Latorre, Leire Pérez-Latorre, Carmen Busca, Carmen Busca, Carmen Busca, Cristina Díez, Cristina Díez, Cristina Díez, Rafael Micán, Rafael Micán, Rafael Micán, Amanda Fernández-Rodríguez, Amanda Fernández-Rodríguez, María Ángeles Jiménez-Sousa, María Ángeles Jiménez-Sousa, Salvador Resino, Salvador Resino

    Published 2025-01-01
    “…Ten and five of these upregulated genes were classified into two significantly enriched KEGG pathways: cell cycle and progesterone-mediated oocyte maturation (q-value <0.05), respectively. Two SDE genes achieved excellent discrimination ability: NCAPG had an AUROC of 0.908, NHLRC1 of 0.879, and a logistic regression model with these two genes of 0.955.ConclusionA pre-treatment gene expression signature in PBMCs was associated with liver fibrosis regression (LSMred>50%) after achieving HCV clearing with HCV therapy in HIV/HCV-coinfected patients, where two SDE genes (NCAPG and NHLRC1) showed the greatest predictive capacity, which could be used as a noninvasive marker of liver fibrosis regression.…”
    Get full text
    Article
  2. 4522
  3. 4523

    Engineering Circuit Analysis / by Hayt, William H. (William Hart), Jr., 1920-1999

    Published 2012
    Table of Contents: “…Mesh Analysis: A Comparison -- 4.6.Computer-Aided Circuit Analysis -- Summary And Review -- Reading Further -- Exercises -- ch. 5 Handy Circuit Analysis Techniques -- 5.1.Linearity and Superposition -- 5.2.Source Transformations -- 5.3.Thevenin and Norton Equivalent Circuits -- 5.4.Maximum Power Transfer -- 5.5.Delta-Wye Conversion -- 5.6.Selecting an Approach: A Summary of Various Techniques -- Summary And Review -- Reading Further -- Exercises -- ch. 6 The Operational Amplifier -- 6.1.Background -- 6.2.The Ideal Op Amp: A Cordial Introduction -- 6.3.Cascaded Stages -- 6.4.Circuits for Voltage and Current Sources -- 6.5.Practical Considerations -- 6.6.Comparators and the Instrumentation Amplifier -- Summary And Review -- Reading Further -- Exercises -- ch. 7 Capacitors And Inductors -- 7.1.The Capacitor -- 7.2.The Inductor -- 7.3.Inductance and Capacitance Combinations -- 7.4.Consequences of Linearity -- 7.5.Simple Op Amp Circuits with Capacitors -- 7.6.Duality -- 7.7.Modeling Capacitors and Inductors with PSpice -- Summary And Review -- Reading Further -- Exercises -- ch. 8 Basic Rl And Rc Circuits -- 8.1.The Source-Free RL Circuit -- 8.2.Properties of the Exponential Response -- 8.3.The Source-Free RC Circuit -- 8.4.A More General Perspective -- 8.5.The Unit-Step Function -- 8.6.Driven RL Circuits -- 8.7.Natural and Forced Response -- 8.8.Driven AC Circuits -- 8.9.Predicting the Response of Sequentially Switched Circuits -- Summary And Review -- Reading Further -- Exercises -- ch. 9 The Rcl Circuit -- 9.1.The Source-Free Parallel Circuit -- 9.2.The Overdamped Parallel RLC Circuit -- 9.3.Critical Damping -- 9.4.The Underdamped Parallel RLC Circuit -- 9.5.The Source-Free Series RLC Circuit -- 9.6.The Complete Response of the RLC Circuit -- 9.7.The Lossless LC Circuit -- Summary And Review -- Reading Further -- Exercises -- ch. 10 Sinusoidal Steady-State Analysis -- 10.1.Characteristics of Sinusoids -- 10.2.Forced Response to Sinusoidal Functions -- 10.3.The Complex Forcing Function -- 10.4.The Phasor -- 10.5.Impedance and Admittance -- 10.6.Nodal and Mesh Analysis -- 10.7.Superposition, Source Transformations and Thevenin's Theorem -- 10.8.Phasor Diagrams -- Summary And Review -- Reading Further -- Exercises -- ch. 11 Ac Circuit Power Analysis -- 11.1.Instantaneous Power -- 11.2.Average Power -- 11.3.Effective Values of Current and Voltage -- 11.4.Apparent Power and Power Factor -- 11.5.Complex Power -- Summary And Review -- Reading Further -- Exercises -- ch. 12 Polyphase Circuits -- 12.1.Polyphase Systems -- 12.2.Single-Phase Three-Wire Systems -- 12.3.Three-Phase Y-Y Connection -- 12.4.The Delta (A) Connection -- 12.5.Power Measurement in Three-Phase Systems -- Summary And Review -- Reading Further -- Exercises -- ch. 13 Magnetically Coupled Circuits -- 13.1.Mutual Inductance -- 13.2.Energy Considerations -- 13.3.The Linear Transformer -- 13.4.The Ideal Transformer -- Summary And Review -- Reading Further -- Exercises -- ch. 14 Complex Frequency And The Laplace Transform -- 14.1.Complex Frequency -- 14.2.The Damped Sinusoidal Forcing Function -- 14.3.Definition of the Laplace Transform -- 14.4.Laplace Transforms of Simple Time Functions -- 14.5.Inverse Transform Techniques -- 14.6.Basic Theorems for the Laplace Transform -- 14.7.The Initial-Value and Final-Value Theorems -- Summary And Review -- Reading Further -- Exercises -- ch. 15 Circuit Analysis In The s-Domain -- 15.1.Z(s) and Y(s) -- 15.2.Nodal and Mesh Analysis in the s-Domain -- 15.3.Additional Circuit Analysis Techniques -- 15.4.Poles, Zeros, and Transfer Functions -- 15.5.Convolution -- 15.6.The Complex-Frequency Plane -- 15.7.Natural Response and the s Plane -- 15.8.A Technique for Synthesizing the Voltage Ratio H(s) = V out/V in -- Summary And Review -- Reading Further -- Exercises -- ch. 16 Frequency Response -- 16.1.Parallel Resonance -- 16.2.Bandwidth and High-Q Circuits -- 16.3.Series Resonance -- 16.4.Other Resonant Forms -- 16.5.Scaling -- 16.6.Bode Diagrams -- 16.7.Basic Filter Design -- 16.8.Advanced Filter Design -- Summary And Review -- Reading Further -- Exercises -- ch. 17 Two-Port Networks -- 17.1.One-Port Networks -- 17.2.Admittance Parameters -- 17.3.Some Equivalent Networks -- 17.4.Impedance Parameters -- 17.5.Hybrid Parameters -- 17.6.Transmission Parameters -- Summary And Review -- Reading Further -- Exercises -- ch. 18 Fourier Circuit Analysis -- 18.1.Trigonometric Form of the Fourier Series -- 18.2.The Use of Symmetry -- 18.3.Complete Response to Periodic Forcing Functions -- 18.4.Complex Form of the Fourier Series -- 18.5.Definition of the Fourier Transform -- 18.6.Some Properties of the Fourier Transform -- 18.7.Fourier Transform Pairs for Some Simple Time Functions -- 18.8.The Fourier Transform of a General Periodic Time Function -- 18.9.The System Function and Response in the Frequency Domain -- 18.10.The Physical Significance of the System Function -- Summary And Review -- Reading Further -- Exercises.…”
    Publisher description
    Table of contents only
    View in OPAC
    Book
  4. 4524

    EGR1 mRNA expression levels and polymorphisms are associated with slaughter performance in chickens by Mao Ye, Xiaohuan Chao, Chutian Ye, Lijin Guo, Zhexia Fan, Xuerong Ma, Aijun Liu, Weiming Liang, Shuya Chen, Cheng Fang, Xiquan Zhang, Qingbin Luo

    Published 2025-01-01
    “…We used various experimental methods, including RT-qPCR, Cell Counting Kit 8, 5-ethynyl-2′-deoxyuridine, western blot, flow cytometry, and immunofluorescence, to validate EGR1’s role in chicken primary myoblasts. …”
    Get full text
    Article
  5. 4525

    Sodium butyrate restored TRESK current controlling neuronal hyperexcitability in a mouse model of oxaliplatin-induced peripheral neuropathic pain by Idy H.T. Ho, Yidan Zou, Kele Luo, Fenfen Qin, Yanjun Jiang, Qian Li, Tingting Jin, Xinyi Zhang, Huarong Chen, Likai Tan, Lin Zhang, Tony Gin, William K.K. Wu, Matthew T.V. Chan, Changyu Jiang, Xiaodong Liu

    Published 2025-01-01
    “…Differential expressions of histone deacetylases (HDACs) and pain-related K+ channels were quantified with rt-qPCR and protein assays. Immunofluorescence assays of histone acetylation at H3K9/14 were performed in primary DRG cultures treated with sodium butyrate. …”
    Get full text
    Article
  6. 4526
  7. 4527
  8. 4528

    Development and validation of an explainable machine learning model for mortality prediction among patients with infected pancreatic necrosisResearch in context by Caihong Ning, Hui Ouyang, Jie Xiao, Di Wu, Zefang Sun, Baiqi Liu, Dingcheng Shen, Xiaoyue Hong, Chiayan Lin, Jiarong Li, Lu Chen, Shuai Zhu, Xinying Li, Fada Xia, Gengwen Huang

    Published 2025-02-01
    “…Funding: The Natural Science Foundation of Hunan Province (2023JJ30885), Postdoctoral Fellowship Program of CPSF (GZB20230872), The Youth Science Foundation of Xiangya Hospital (2023Q13), The Project Program of National Clinical Research Center for Geriatric Disorders of Xiangya Hospital (2021LNJJ19).…”
    Get full text
    Article
  9. 4529

    Analysis of the focal relationship of level five leadership with school organizational excellence by Hosein Majooni, Siroos Ghanbari

    Published 2024-05-01
    “…Considering the classes of the research community based on the number of cities/districts (39), using proportional stratified random sampling and Cochran's formula (at the alpha level of 0.05; error value of 0.05 and the ratio of p and q equal to 0.5), the statistical sample volume was determined to be 375 teachers. …”
    Get full text
    Article
  10. 4530
  11. 4531

    Summatory Multiplicative Arithmetic Functions: Scaling and Renormalization by Leonid G. Fel

    Published 2025-01-01
    “…We apply the derived formulas to a large number of basic summatory functions including the Euler <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> and Dedekind <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> totient functions, divisor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and prime divisor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> functions, the Ramanujan sum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>q</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and Ramanujan <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> Dirichlet series, and others.…”
    Get full text
    Article