Showing 21 - 40 results of 40 for search '"Naval Research Laboratory"', query time: 0.11s Refine Results
  1. 21
  2. 22
  3. 23

    A Global Thermospheric Density Prediction Framework Based on a Deep Evidential Method by Yiran Wang, Xiaoli Bai

    Published 2024-12-01
    “…Through the deep evidential method, we assimilate data from various sources including solar and geomagnetic conditions, accelerometer‐derived density data, and empirical models including the Jacchia‐Bowman model (JB‐2008) and the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE‐00) model. …”
    Get full text
    Article
  4. 24
  5. 25
  6. 26
  7. 27
  8. 28

    MSIS‐UQ: Calibrated and Enhanced NRLMSIS 2.0 Model With Uncertainty Quantification by Richard J. Licata, Piyush M. Mehta, Daniel R. Weimer, W. Kent Tobiska, Jean Yoshii

    Published 2022-11-01
    “…The most recent version of MSIS is the Naval Research Laboratory (NRL) MSIS 2.0 empirical atmospheric model. …”
    Get full text
    Article
  9. 29

    A New Method for Deriving the Nightside Thermospheric Density Based on GUVI Dayside Limb Observations by Tingting Yu, Zhipeng Ren, You Yu, Weixing Wan

    Published 2020-02-01
    “…Simultaneously, we decompose the background thermospheric density from U.S. Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended model into different EOFs. …”
    Get full text
    Article
  10. 30

    Improving the Extraction Ability of Thermospheric Mass Density Variations From Observational Data by Deep Learning by Wenbo Li, Libo Liu, Yiding Chen, Zhuowei Xiao, Huijun Le, Ruilong Zhang

    Published 2023-07-01
    “…The observations of CHAllenging Minisatellite Payload are utilized in the training phase, while the Gravity Recovery and Climate Experiment, High Accuracy Satellite Drag Model and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended model are used to evaluate the performance of the DL model. …”
    Get full text
    Article
  11. 31
  12. 32

    Comparative Accuracies of Models for Drag Prediction During Geomagnetically Disturbed Periods: A First Principles Model Versus Empirical Models by R. L. Walterscheid, M. W. Chen, C.‐C. Chao, S. Gegenheimer, J. Cabrera‐Guzman, J. McVey

    Published 2023-05-01
    “…Abstract We examine the accuracy of density prediction by the first principles model Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) developed by the National Center for Atmospheric Research and compare it to the accuracy of three empirical models: Jacchia 71, the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Extended 2000 (NRLMSIS), Jacchia 1971, and Jacchia‐Bowman 2008. …”
    Get full text
    Article
  13. 33

    Improved Neutral Density Predictions Through Machine Learning Enabled Exospheric Temperature Model by Richard J. Licata, Piyush M. Mehta, Daniel R. Weimer, W. Kent Tobiska

    Published 2021-12-01
    “…Comparing the performance of both EXTEMPLAR models and the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended model (NRLMSISE‐00) across different solar and geomagnetic activity levels shows that EXTEMPLAR‐ML has the lowest mean absolute error across 80% of conditions tested. …”
    Get full text
    Article
  14. 34
  15. 35

    Interplanetary Influence on Thermospheric Mass Density: Insights From Deep Learning Analyses by Wenbo Li, Libo Liu, Yiding Chen, Yi‐Jia Zhou, Huijun Le, Ruilong Zhang

    Published 2024-09-01
    “…We explore the TMD features under different solar‐terrestrial environmental conditions and discuss the effects of various inputs by comparing the DL simulation results with satellite observations from Gravity Recovery and Climate Experiment‐A and Swarm‐A, as well as the simulation results from Jacchia‐Bowman 2008, Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar model 2.1, and Drag Temperature Model 2013. …”
    Get full text
    Article
  16. 36
  17. 37
  18. 38
  19. 39

    The NANOGrav 15 Yr Data Set: Removing Pulsars One by One from the Pulsar Timing Array by Gabriella Agazie, Akash Anumarlapudi, Anne M. Archibald, Zaven Arzoumanian, Jeremy G. Baier, Paul T. Baker, Bence Bécsy, Laura Blecha, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, J. Andrew Casey-Clyde, Maria Charisi, Shami Chatterjee, Tyler Cohen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful Cromartie, Kathryn Crowter, Megan E. DeCesar, Paul B. Demorest, Heling Deng, Lankeswar Dey, Timothy Dolch, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Gabriel E. Freedman, Emiko C. Gardiner, Nate Garver-Daniels, Peter A. Gentile, Kyle A. Gersbach, Joseph Glaser, Deborah C. Good, Lydia Guertin, Kayhan Gültekin, Jeffrey S. Hazboun, Ross J. Jennings, Aaron D. Johnson, Megan L. Jones, Andrew R. Kaiser, David L. Kaplan, Luke Zoltan Kelley, Matthew Kerr, Joey S. Key, Nima Laal, Michael T. Lam, William G. Lamb, Bjorn Larsen, T. Joseph W. Lazio, Natalia Lewandowska, Tingting Liu, Duncan R. Lorimer, Jing Luo, Ryan S. Lynch, Chung-Pei Ma, Dustin R. Madison, Alexander McEwen, James W. McKee, Maura A. McLaughlin, Natasha McMann, Bradley W. Meyers, Patrick M. Meyers, Hannah Middleton, Chiara M. F. Mingarelli, Andrea Mitridate, Christopher J. Moore, Cherry Ng, David J. Nice, Stella Koch Ocker, Ken D. Olum, Timothy T. Pennucci, Benetge B. P. Perera, Nihan S. Pol, Henri A. Radovan, Scott M. Ransom, Paul S. Ray, Joseph D. Romano, Jessie C. Runnoe, Alexander Saffer, Shashwat C. Sardesai, Ann Schmiedekamp, Carl Schmiedekamp, Kai Schmitz, Brent J. Shapiro-Albert, Xavier Siemens, Joseph Simon, Magdalena S. Siwek, Sophia V. Sosa Fiscella, Ingrid H. Stairs, Daniel R. Stinebring, Kevin Stovall, Abhimanyu Susobhanan, Joseph K. Swiggum, Stephen R. Taylor, Jacob E. Turner, Caner Unal, Michele Vallisneri, Alberto Vecchio, Sarah J. Vigeland, Haley M. Wahl, Caitlin A. Witt, David Wright, Olivia Young

    Published 2025-01-01
    Get full text
    Article
  20. 40