Showing 521 - 538 results of 538 for search '"M5S"', query time: 0.22s Refine Results
  1. 521

    Chaotic oceanic excitation of low-frequency polar motion variability by L. Börger, M. Schindelegger, M. Zhao, R. M. Ponte, A. Löcher, B. Uebbing, J.-M. Molines, T. Penduff

    Published 2025-01-01
    “…Comparisons of observed interannual polar motion excitation against the sum of known surficial mass redistribution effects are sensitive to the representation of intrinsic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mover accent="true"><mi mathvariant="italic">χ</mi><mo stretchy="false" mathvariant="normal">^</mo></mover><mi mathvariant="normal">O</mi></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="0f3a73f3fbed0a489e998628e7d4569c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-16-75-2025-ie00004.svg" width="16pt" height="15pt" src="esd-16-75-2025-ie00004.png"/></svg:svg></span></span> signals: reductions in the observed excitation variance can be as high as 68 % or as low as 50 % depending on the choice of the ensemble member. …”
    Get full text
    Article
  2. 522

    The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model by V. K. Arora, A. Lima, R. Shrestha

    Published 2025-01-01
    “…The northerly Mackenzie and Yukon River basins show a decrease in the evaporation ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>E</mi><mo>/</mo><mi>P</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="21pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7c1d1da307bb89739c3c036cc37ae068"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-29-291-2025-ie00001.svg" width="21pt" height="14pt" src="hess-29-291-2025-ie00001.png"/></svg:svg></span></span>) and an increase in the runoff ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>R</mi><mo>/</mo><mi>P</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="366a9548bed95919f4913f3f1ff21de7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-29-291-2025-ie00002.svg" width="22pt" height="14pt" src="hess-29-291-2025-ie00002.png"/></svg:svg></span></span>) since the increase in precipitation is more than enough to offset the increase in evaporation associated with increasing temperature. …”
    Get full text
    Article
  3. 523

    A sub-fossil coral Sr∕Ca record documents northward shifts of the Tropical Convergence Zone in the eastern Indian Ocean by M. Pfeiffer, H. Takayanagi, H. Takayanagi, L. Reuning, T. K. Watanabe, T. K. Watanabe, S. Ito, D. Garbe-Schönberg, T. Watanabe, T. Watanabe, T. Watanabe, C.-C. Wu, C.-C. Shen, C.-C. Shen, J. Zinke, G.-J. A. Brummer, S. Y. Cahyarini

    Published 2025-01-01
    “…U<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="57ee8123d9c9aefcf23d9c7f6463c158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-21-211-2025-ie00005.svg" width="8pt" height="14pt" src="cp-21-211-2025-ie00005.png"/></svg:svg></span></span>Th dating shows that the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><mi mathvariant="normal">Sr</mi></mrow><mo>/</mo><mrow class="chem"><mi mathvariant="normal">Ca</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="33pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="90dc7a8a55bd37b8673bdad01c3cf421"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-21-211-2025-ie00006.svg" width="33pt" height="14pt" src="cp-21-211-2025-ie00006.png"/></svg:svg></span></span>-based SST record extends from 1869–1918 and from 1824–1862 with a relative age uncertainty of <span class="inline-formula">±3</span> years (<span class="inline-formula">2<i>σ</i></span>). …”
    Get full text
    Article
  4. 524
  5. 525

    Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record by M. Legrand, M. Legrand, M. Vorobyev, D. Bokuchava, S. Kutuzov, S. Kutuzov, A. Plach, A. Stohl, A. Khairedinova, V. Mikhalenko, M. Vinogradova, S. Eckhardt, S. Preunkert

    Published 2025-01-01
    “…The NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="aa378b71f34a6c23384fc0eb7c6e7621"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1385-2025-ie00002.svg" width="8pt" height="15pt" src="acp-25-1385-2025-ie00002.png"/></svg:svg></span></span> ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. …”
    Get full text
    Article
  6. 526

    Small emission sources in aggregate disproportionately account for a large majority of total methane emissions from the US oil and gas sector by J. P. Williams, J. P. Williams, M. Omara, M. Omara, A. Himmelberger, D. Zavala-Araiza, K. MacKay, K. MacKay, J. Benmergui, J. Benmergui, J. Benmergui, M. Sargent, S. C. Wofsy, S. P. Hamburg, S. P. Hamburg, R. Gautam, R. Gautam

    Published 2025-02-01
    “…We find that of the total 14.6 (12.7–16.8) <span class="inline-formula">Tg yr<sup>−1</sup></span> oil–gas methane emissions in the CONUS for the year 2021, 70 % (95 % confidence intervals: 61 %–81 %) originate from facilities emitting <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mn mathvariant="normal">100</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="19fcbf30880ac03389a7071bd56f55a2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1513-2025-ie00001.svg" width="61pt" height="15pt" src="acp-25-1513-2025-ie00001.png"/></svg:svg></span></span> and 30 % (26 %–34 %) and <span class="inline-formula">∼80 %</span> (68 %–90 %) originate from facilities emitting <span class="inline-formula">&lt;10</span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mn mathvariant="normal">200</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="08f24a8bb4b8ec74d183291f532cf7c9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1513-2025-ie00002.svg" width="61pt" height="15pt" src="acp-25-1513-2025-ie00002.png"/></svg:svg></span></span>, respectively. …”
    Get full text
    Article
  7. 527

    PES1上调ERα/ERβ蛋白比率促进甲状腺乳头状癌细胞增殖和侵袭迁移 by 程龙, 邱伊波, 许琳婉, 刘智敏

    Published 2020-07-01
    “…></graphic></alternatives></inline-formula>2.54);PES1下调使BCPAP细胞中ERα/ERβ蛋白比率明显降低(<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mo>≈</mo></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/8bce9c36-7302-419b-820e-f30b65e21be3-M005.jpg"><?…”
    Get full text
    Article
  8. 528

    Effect of Lymphatic Drainage Manipulation on Knee Joint Swelling after Anterior Cruciate Ligament Reconstruction by MENG Cong, BAO Yong, ZHANG Weiming

    Published 2024-02-01
    “…The partial regression coefficient showed that at 1, 2 and 4 weeks postoperatively <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mover accent="true"><mi>β</mi><mo>^</mo></mover></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/4908709C-8B7D-4862-9A38-C00103A9AC79-M005.jpg"><?…”
    Get full text
    Article
  9. 529
  10. 530

    Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect by A. Milousis, K. Klingmüller, A. P. Tsimpidi, J. F. Kok, M. Kanakidou, M. Kanakidou, M. Kanakidou, A. Nenes, A. Nenes, V. A. Karydis

    Published 2025-01-01
    “…Thus, the radiative effect (RE) of NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8c72af1edd6d67ed562efcaf5163d22b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1333-2025-ie00002.svg" width="9pt" height="16pt" src="acp-25-1333-2025-ie00002.png"/></svg:svg></span></span> aerosol may become more important than that of SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4a53e7d1f00f4334c934356877052515"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1333-2025-ie00003.svg" width="13pt" height="17pt" src="acp-25-1333-2025-ie00003.png"/></svg:svg></span></span> aerosol in the future. …”
    Get full text
    Article
  11. 531

    Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles by J. Stude, J. Stude, H. Aufmhoff, H. Schlager, M. Rapp, M. Rapp, C. Baumann, F. Arnold, B. Strelnikov

    Published 2025-01-01
    “…In the second flight, however, we detected positively charged particles between around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00005.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00005.png"/></svg:svg></span></span> 180 and 350 and a number of different negatively charged particles up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ab5624c790cbaa3f5350f350107808ad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00006.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00006.png"/></svg:svg></span></span> 5500. …”
    Get full text
    Article
  12. 532

    The NANOGrav 15 Yr Data Set: Removing Pulsars One by One from the Pulsar Timing Array by Gabriella Agazie, Akash Anumarlapudi, Anne M. Archibald, Zaven Arzoumanian, Jeremy G. Baier, Paul T. Baker, Bence Bécsy, Laura Blecha, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, J. Andrew Casey-Clyde, Maria Charisi, Shami Chatterjee, Tyler Cohen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful Cromartie, Kathryn Crowter, Megan E. DeCesar, Paul B. Demorest, Heling Deng, Lankeswar Dey, Timothy Dolch, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Gabriel E. Freedman, Emiko C. Gardiner, Nate Garver-Daniels, Peter A. Gentile, Kyle A. Gersbach, Joseph Glaser, Deborah C. Good, Lydia Guertin, Kayhan Gültekin, Jeffrey S. Hazboun, Ross J. Jennings, Aaron D. Johnson, Megan L. Jones, Andrew R. Kaiser, David L. Kaplan, Luke Zoltan Kelley, Matthew Kerr, Joey S. Key, Nima Laal, Michael T. Lam, William G. Lamb, Bjorn Larsen, T. Joseph W. Lazio, Natalia Lewandowska, Tingting Liu, Duncan R. Lorimer, Jing Luo, Ryan S. Lynch, Chung-Pei Ma, Dustin R. Madison, Alexander McEwen, James W. McKee, Maura A. McLaughlin, Natasha McMann, Bradley W. Meyers, Patrick M. Meyers, Hannah Middleton, Chiara M. F. Mingarelli, Andrea Mitridate, Christopher J. Moore, Cherry Ng, David J. Nice, Stella Koch Ocker, Ken D. Olum, Timothy T. Pennucci, Benetge B. P. Perera, Nihan S. Pol, Henri A. Radovan, Scott M. Ransom, Paul S. Ray, Joseph D. Romano, Jessie C. Runnoe, Alexander Saffer, Shashwat C. Sardesai, Ann Schmiedekamp, Carl Schmiedekamp, Kai Schmitz, Brent J. Shapiro-Albert, Xavier Siemens, Joseph Simon, Magdalena S. Siwek, Sophia V. Sosa Fiscella, Ingrid H. Stairs, Daniel R. Stinebring, Kevin Stovall, Abhimanyu Susobhanan, Joseph K. Swiggum, Stephen R. Taylor, Jacob E. Turner, Caner Unal, Michele Vallisneri, Alberto Vecchio, Sarah J. Vigeland, Haley M. Wahl, Caitlin A. Witt, David Wright, Olivia Young

    Published 2025-01-01
    Get full text
    Article
  13. 533

    How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon by I. Chanca, I. Chanca, I. Chanca, I. Levin, S. Trumbore, K. Macario, K. Macario, K. Macario, J. Lavric, J. Lavric, C. A. Quesada, A. Carioca de Araújo, C. Quaresma Dias Júnior, H. van Asperen, S. Hammer, C. A. Sierra

    Published 2025-01-01
    “…For the campaign of October 2019, the mean <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msub><mrow class="chem"><msup><mi/><mn mathvariant="normal">14</mn></msup><mi mathvariant="normal">C</mi></mrow><mtext>ER</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2d71f983fa00940192893bb35b3f9993"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-455-2025-ie00003.svg" width="39pt" height="16pt" src="bg-22-455-2025-ie00003.png"/></svg:svg></span></span> ranged from 24 ‰ to 41 ‰ with both Keeling and Miller–Tans methods. …”
    Get full text
    Article
  14. 534
  15. 535

    A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape by P. de Caritat, P. de Caritat, A. Dosseto, F. Dux

    Published 2025-01-01
    “…The Sr was then separated by chromatography and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e22ae2ee47cc1ea64b1ec348ae40208d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00003.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00003.png"/></svg:svg></span></span> ratio determined by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). …”
    Get full text
    Article
  16. 536

    双阶自复位防屈曲支撑滞回性能参数分析 by 王涛, 潘雨桐, 孟丽岩, 刘吉胜, 孔涛

    Published 2024-01-01
    “…></graphic></alternatives></inline-formula>对DY-SCBRB滞回性能的影响规律,给出支撑性能参数取值建议,研究表明:DY-SCBRB不仅具有显著的双阶耗能特性,可以实现不同水平地震下的全阶段耗能,而且其自复位能力强,能够大大降低结构震后残余变形;<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><msub><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/732DAE6B-08A4-45d3-8C00-278EF83F4EC2-M005.jpg"><?…”
    Get full text
    Article
  17. 537

    双阶自复位防屈曲支撑滞回性能参数分析 by 王涛, 潘雨桐, 孟丽岩, 刘吉胜, 孔涛

    Published 2024-12-01
    “…></graphic></alternatives></inline-formula>对DY-SCBRB滞回性能的影响规律,给出支撑性能参数的取值建议,研究结果表明:DY-SCBRB不仅具有显著的双阶耗能特性,可以实现不同水平地震下的全阶段耗能,而且自复位能力强,能够大大减小结构的震后残余变形;增大<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><msub><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/6FB667C2-6ECF-4fe5-847C-5AEDC664F147-M001.jpg"><?…”
    Get full text
    Article
  18. 538

    International norms for adult handgrip strength: A systematic review of data on 2.4 million adults aged 20 to 100+ years from 69 countries and regions by Grant R. Tomkinson, Justin J. Lang, Lukáš Rubín, Ryan McGrath, Bethany Gower, Terry Boyle, Marilyn G. Klug, Alexandra J. Mayhew, Henry T. Blake, Francisco B. Ortega, Cristina Cadenas-Sanchez, Costan G. Magnussen, Brooklyn J. Fraser, Tetsuhiro Kidokoro, Yang Liu, Kaare Christensen, Darryl P. Leong, Mette Aadahl, Edimansyah Abdin, Julian Alcazar, Aqeel Alenazi, Bader Alqahtani, Cledir De A. Amaral, Thatiana L.M. Amaral, Alex Andrade Fernandes, Peter Axelsson, Jennifer N. Baldwin, Karin Bammann, Aline R. Barbosa, Ameline Bardo, Inosha Bimali, Peter Bjerregaard, Martin Bobak, Colin A. Boreham, Klaus Bös, João Carlos Bouzas Marins, Joshua Burns, Nadezda Capkova, Lilia Castillo-Martínez, Liang-Kung Chen, Siu Ming Choi, Rebecca K.J. Choong, Susana C. Confortin, Cyrus Cooper, Jorge E. Correa-Bautista, Amandine Cournil, Grace Cruz, Eling D. de Bruin, José Antonio De Paz, Bruno De Souza Moreira, Luiz Antonio Dos Anjos, María Cristina Enríquez Reyna, Eduardo Ferriolli, Gillian Forrester, Elena Frolova, Abadi K. Gebre, Atef M. Ghaleb, Tiffany K. Gill, Yasuyuki Gondo, M. Cristina Gonzalez, Citlali Gonzalez Alvarez, Mary K. Hannah, Nicholas C. Harvey, Jean-Yves Hogrel, Marie-Theres Huemer, Toshiko Iidaka, Lewis A. Ingram, Dmitri A. Jdanov, Victoria L. Keevil, Wolfgang Kemmler, Rose Anne Kenny, Dae-Yeon Kim, Tracy L. Kivell, Ingirid G.H. Kjær, Alexander Kluttig, Rumi Kozakai, Danit Langer, Lisbeth A. Larsen, Wei-Ju Lee, David A. Leon, Eric Lichtenstein, Bertis B. Little, Roberto Alves Lourenço, Rahul Malhotra, Robert M. Malina, Kiyoaki Matsumoto, Tal Mazor-Karsenty, Marnee J. McKay, Sinéad McLoughlin, Abhishek L. Mensegere, Mostafa Mohammadian, Virgilio Garcia Moreira, Hiroshi Murayama, Anne Murray, Anita Liberalesso Neri, Claudia Niessner, Gabriel Núñez Othón, Gabriel Olveira, Suzanne G. Orchard, Andrezj Pajak, Chan Woong Park, Julie A. Pasco, Maria E. Peña Reyes, Leani Souza Máximo Pereira, Annette Peters, Eric Tsz-Chun Poon, Margareth C. Portela, Jedd Pratt, Robinson Ramírez-Vélez, Wendy Rodríguez-García, Joanne Ryan, Mauricio A. San-Martín, Francisco José Sánchez-Torralvo, Mahnaz Saremi, Arno Schmidt-Trucksäss, Satoshi Seino, Shamsul Azhar Shah, Marc Sim, Bjørn Heine Strand, Mythily Subramaniam, Charlotte Suetta, Sophia X. Sui, Jonas S. Sundarakumar, Koya Suzuki, Abdonas Tamosiunas, Maw Pin Tan, Yu Taniguchi, Barbara Thorand, Anna Turusheva, Anne Therese Tveter, Jonathan Wagner, Dao Wang, Stuart J. Warden, Julia Wearing, Shiou Liang Wee, Leo D. Westbury, Agnieszka Wiśniowska-Szurlej, Alexander Woll, Noriko Yoshimura, Ruby Yu

    Published 2025-12-01
    Get full text
    Article