Showing 2,961 - 2,980 results of 197,473 for search '"C "', query time: 0.15s Refine Results
  1. 2961
  2. 2962

    The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph by Qiu Qi-Ming, Song Jian-Biao, Yan Li, Dong Ai-Guo, Li Chuan-Tao, Zheng Zhi-Yuan

    Published 2022-08-01
    “…C12H14N2·2ClO4, monoclinic, P21/c (no. 14), a = 5.3170(4) Å, b = 12.8711(8) Å, c = 11.6788(7) Å, β = 100.888(2)°, V = 784.86(9) Å3, Z = 2, Rgt(F) = 0.0434, wRref(F2) = 0.1211, T = 298 K.…”
    Get full text
    Article
  3. 2963

    Plasma C1q/TNF-Related Protein-3 (CTRP-3) and High-Mobility Group Box-1 (HMGB-1) Concentrations in Subjects with Prediabetes and Type 2 Diabetes by Huili Wei, Hua Qu, Hang Wang, Huacong Deng

    Published 2016-01-01
    “…To detect the association of C1q/TNF-related protein-3 (CTRP-3) and high-mobility group box-1 (HMGB-1) in subjects with prediabetes (pre-DM) and newly diagnosed type 2 diabetes (nT2DM). …”
    Get full text
    Article
  4. 2964

    Clinical Observation of Posterior-Chamber Phakic Implantable Collamer Lens V4c Implantation in Myopic Patients with Shallow Anterior Chamber Depth: A Retrospective, Consecutive Observational Study by Juan Yuan, Shuang Wu, Zongli Hu, Chunlin Chen, Shiyang Ye, Jian Ye

    Published 2024-01-01
    “…Our objective was to assess the clinical effect and the range of anterior chamber angle width of posterior-chamber implantable collamer lens V4c (ICL V4c) implantation in patients with anterior chamber depth (ACD) < 2.8 mm. …”
    Get full text
    Article
  5. 2965
  6. 2966

    General existence principles for nonlocal boundary value problems with <mml:math alttext="$PHI$"> <mml:mi>&#x03C6;</mml:mi> </mml:math>-laplacian and their applications

    Published 2006-01-01
    “…<p>The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form <mml:math alttext="$(phi(x'))'=f_1(t,x,x')+f_2(t,x,x')F_1x+f_3(t,x,x')F_2x$,$alpha(x)=0$"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x03C6;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B1;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math>, <mml:math alttext="$eta(x)=0$"> <mml:mi>&#x03B2;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math>, where <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> satisfy local Carathéodory conditions on some <mml:math alttext="$[0,T]imesmathcal{D}_jsubset R^2$"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x00D7;</mml:mo> <mml:msub> <mml:mi>&#x1D49F;</mml:mi> <mml:mi>j</mml:mi> </mml:msub> <mml:mo>&#x2282;</mml:mo> <mml:msup> <mml:mi>&#x211D;</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> are either regular or have singularities in their phase variables <mml:math alttext="$(j=1,2,3)$"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>, <mml:math alttext="$F_i: C^1[0,T] ightarrow C^0[0,T]$ $(i=1,2)$"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>, and <mml:math alttext="$alpha,eta:C^1[0,T] ightarrowR$"> <mml:mrow> <mml:mi>&#x03B1;</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B2;</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:mi>&#x211D;</mml:mi> </mml:mrow> </mml:math> are continuous. …”
    Get full text
    Article
  7. 2967
  8. 2968
  9. 2969

    Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3 by Zhou Meng-Shu, Fu Hong-Ru

    Published 2022-08-01
    “…C5H5N5O3, orthorhombic, Pnma (no. 62), a = 13.4643(13) Å, b = 6.2866(10) Å, c = 9.1138(9) Å, V = 771.43(16) Å3, Z = 4, Rgt(F) = 0.0517, wRref(F2) = 0.1317, T = 293 K.…”
    Get full text
    Article
  10. 2970
  11. 2971
  12. 2972

    Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3 by Wang Lei, Meng Qing-Guo, Jiang Nan, Wei Lin, Wang Chun-Hua

    Published 2021-09-01
    “…C18H17NO3, monoclinic, P21/n (no. 14), a = 14.702(3) Å, b = 7.0421(11) Å, c = 15.303(3) Å, β = 113.32(2)°, V = 1454.9(5) Å3, Z = 4, Rgt(F) = 0.0522, wRref(F2) = 0.1274, T = 100.03(18) K.…”
    Get full text
    Article
  13. 2973

    Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7 by Jia Guo-Kai, Yuan Xian-You

    Published 2022-08-01
    “…C12H13N1O7, monoclinic, P21/c (no. 14), a = 11.416(7) Å, b = 13.860(8) Å, c = 8.215(5) Å, β = 99.607(6)°, V = 1281.6(13) Å3, Z = 4, Rgt(F) = 0.0433, wRref(F2) = 0.1274, T = 293(2) K.…”
    Get full text
    Article
  14. 2974

    Age- and Gender-Based Differences in Nest-Building Behavior and Learning and Memory Performance Measured Using a Radial Six-Armed Water Maze in C57BL/6 Mice by Xiang-Dong Xiong, Wei-Dong Xiong, Shang-Shen Xiong, Gui-Hai Chen

    Published 2018-01-01
    “…Methods. In C57BL/6 mice, nest-building behavior was recorded as nesting scores, while spatial learning and memory behaviors were assessed using RAWM platform search errors and latencies. …”
    Get full text
    Article
  15. 2975

    Broches de cinturón de la serie bizantina hallados en la necrópolis de la villa de Los Villaricos (Mula, Murcia) (siglo VII d. C.) by Rafael González Fernández, Jaime Vizcaíno Sánchez, Gisela Ripoll, Francisco Fernández Matallana, José Antonio Zapata Parra, José Javier Martínez García

    Published 2025-01-01
    “…En este trabajo se estudian dos broches de cinturón del siglo VII d. C. procedentes del cementerio tardoantiguo que se sitúa sobre la pars urbana de la villa romana de los Villaricos (Mula, Murcia). …”
    Get full text
    Article
  16. 2976

    Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2−xClx as Cathode Materials for Lithium Ion Batteries at 55°C by Hai-Lang Zhang, Shuixiang Liu

    Published 2013-01-01
    “…The XRD patterns indicate that the LiNi1/3Co1/3Mn1/3O2-xClx powders with better crystalline structure could be obtained at calcining temperature 850°C for 20 h under air atmosphere and show that the chlorine addition may induce the change of lattice parameters. …”
    Get full text
    Article
  17. 2977
  18. 2978

    Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes by Zhen Qiu, Yuhong He, Hao Ming, Shaoqing Lei, Yan Leng, Zhong-yuan Xia

    Published 2019-01-01
    “…In conclusion, LPS could increase the sensitivity of H9C2 cells to HG and H/R and aggravated HG- and H/R-induced H9C2 cell injury by promoting ROS production to induce NLRP3 inflammasome-mediated pyroptosis.…”
    Get full text
    Article
  19. 2979

    Comparative Agreement Analysis of Differences in 1,5-Anhydroglucitol, Glycated Albumin, and Glycated Hemoglobin A1c Levels between Fasting and Postprandial States in Steamed Bread Meal Test by Hang Su, Yufei Wang, Xiaojing Ma, Xingxing He, Lingwen Ying, Junling Tang, Lu Dong, Yuqian Bao, Jian Zhou, Weiping Jia

    Published 2017-01-01
    “…Our previous study indicated that serum 1,5-anhydroglucitol (1,5-AG) levels slightly increased after a glucose load; therefore, this study was conducted to explore short-term changes in 1,5-AG levels after a steamed bread meal test (SBMT) and compare the agreement of 1,5-AG, glycated albumin (GA), and glycated hemoglobin A1c (HbA1c) levels between fasting and postprandial states after an SBMT. …”
    Get full text
    Article
  20. 2980