Showing 341 - 360 results of 678 for search '"Boundary value problem"', query time: 0.06s Refine Results
  1. 341
  2. 342
  3. 343

    On the numerical solution of two point boundary value problem for the Helmholtz type equation by finite difference method with non regular step length between nodes by Pramod Pandey

    Published 2021-03-01
    Subjects: “…Boundary Value Problem, Convergence of the Method, Cubic Order, Finite Difference Method, Nonuniform Step Length.…”
    Get full text
    Article
  4. 344

    Solution of the First Boundary-Value Problem for a System of Autonomous Second-Order Linear Partial Differential Equations of Parabolic Type with a Single Delay by Josef Diblík, Denis Khusainov, Oleksandra Kukharenko, Zdeněk Svoboda

    Published 2012-01-01
    “…The first boundary-value problem for an autonomous second-order system of linear partial differential equations of parabolic type with a single delay is considered. …”
    Get full text
    Article
  5. 345

    Iterative Analysis of the Unique Positive Solution for a Class of Singular Nonlinear Boundary Value Problems Involving Two Types of Fractional Derivatives with p-Laplacian Operator by Fang Wang, Lishan Liu, Yonghong Wu, Yumei Zou

    Published 2019-01-01
    “…This article is concerned with a class of singular nonlinear fractional boundary value problems with p-Laplacian operator, which contains Riemann–Liouville fractional derivative and Caputo fractional derivative. …”
    Get full text
    Article
  6. 346
  7. 347
  8. 348
  9. 349

    The Existence and Uniqueness of a New Boundary Value Problem (Type of Problem “E”) for Linear System Equations of the Mixed Hyperbolic-Elliptic Type in the Multivariate Dimension with the Changing Time Direction by Mahammad A. Nurmammadov

    Published 2015-01-01
    “…The existence and uniqueness of the boundary value problem for linear systems equations of the mixed hyperbolic-elliptic type in the multivariate domain with the changing time direction are studied. …”
    Get full text
    Article
  10. 350

    General existence principles for nonlocal boundary value problems with <mml:math alttext="$PHI$"> <mml:mi>&#x03C6;</mml:mi> </mml:math>-laplacian and their applications

    Published 2006-01-01
    “…<p>The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form <mml:math alttext="$(phi(x'))'=f_1(t,x,x')+f_2(t,x,x')F_1x+f_3(t,x,x')F_2x$,$alpha(x)=0$"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x03C6;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B1;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math>, <mml:math alttext="$eta(x)=0$"> <mml:mi>&#x03B2;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math>, where <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> satisfy local Carathéodory conditions on some <mml:math alttext="$[0,T]imesmathcal{D}_jsubset R^2$"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x00D7;</mml:mo> <mml:msub> <mml:mi>&#x1D49F;</mml:mi> <mml:mi>j</mml:mi> </mml:msub> <mml:mo>&#x2282;</mml:mo> <mml:msup> <mml:mi>&#x211D;</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> are either regular or have singularities in their phase variables <mml:math alttext="$(j=1,2,3)$"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>, <mml:math alttext="$F_i: C^1[0,T] ightarrow C^0[0,T]$ $(i=1,2)$"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>, and <mml:math alttext="$alpha,eta:C^1[0,T] ightarrowR$"> <mml:mrow> <mml:mi>&#x03B1;</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B2;</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:mi>&#x211D;</mml:mi> </mml:mrow> </mml:math> are continuous. …”
    Get full text
    Article
  11. 351
  12. 352
  13. 353
  14. 354
  15. 355
  16. 356
  17. 357
  18. 358
  19. 359
  20. 360