Suggested Topics within your search.
Showing 601 - 609 results of 609 for search '"Arctic"', query time: 0.04s Refine Results
  1. 601
  2. 602

    Spatiotemporal evolution and driving force analysis of drought characteristics in the Yellow River Basin by Meiying Wang, Yangbo Chen, Jingyu Li, Yanjun Zhao

    Published 2025-01-01
    “…The SPI12 was influenced by the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Arctic Oscillation (AO) before 2000, showing significant positive correlations with ENSO and AO, and a negative correlation with PDO. …”
    Get full text
    Article
  3. 603
  4. 604
  5. 605

    Advancements and opportunities to improve bottom–up estimates of global wetland methane emissions by Qing Zhu, Daniel J Jacob, Kunxiaojia Yuan, Fa Li, Benjamin R K Runkle, Min Chen, A Anthony Bloom, Benjamin Poulter, James D East, William J Riley, Gavin McNicol, John Worden, Christian Frankenberg, Meghan Halabisky

    Published 2025-01-01
    “…These substantial uncertainties highlight gaps in our understanding of wetland CH _4 biogeochemistry and wetland inundation dynamics. Major tropical and arctic wetland complexes are regional hotspots of CH _4 emissions. …”
    Get full text
    Article
  6. 606

    The very-high-resolution configuration of the EC-Earth global model for HighResMIP by E. Moreno-Chamarro, E. Moreno-Chamarro, E. Moreno-Chamarro, T. Arsouze, T. Arsouze, M. Acosta, P.-A. Bretonnière, M. Castrillo, E. Ferrer, A. Frigola, D. Kuznetsova, E. Martin-Martinez, P. Ortega, S. Palomas

    Published 2025-01-01
    “…Other biases persist or worsen with increased resolution from LR to VHR, such as the warm bias over the tropical upwelling region and the associated cloud cover underestimation, a precipitation excess over the tropical South Atlantic and North Pacific, and overly thick sea ice and an excess in oceanic mixing in the Arctic. VHR shows improved air–sea coupling over the tropical region, although it tends to overestimate the oceanic influence on the atmospheric variability at midlatitudes compared to observations and LR and HR. …”
    Get full text
    Article
  7. 607
  8. 608

    Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4 by T. Rackow, T. Rackow, X. Pedruzo-Bagazgoitia, T. Becker, S. Milinski, I. Sandu, R. Aguridan, P. Bechtold, S. Beyer, J. Bidlot, S. Boussetta, W. Deconinck, M. Diamantakis, P. Dueben, E. Dutra, E. Dutra, R. Forbes, R. Ghosh, H. F. Goessling, I. Hadade, J. Hegewald, T. Jung, T. Jung, S. Keeley, L. Kluft, N. Koldunov, A. Koldunov, T. Kölling, J. Kousal, C. Kühnlein, P. Maciel, K. Mogensen, T. Quintino, I. Polichtchouk, B. Reuter, D. Sármány, P. Scholz, D. Sidorenko, J. Streffing, B. Sützl, D. Takasuka, D. Takasuka, S. Tietsche, M. Valentini, B. Vannière, N. Wedi, L. Zampieri, F. Ziemen

    Published 2025-01-01
    “…We provide first examples of significant advances in the realism and thus opportunities of these kilometre-scale simulations, such as a clear imprint of resolved Arctic sea ice leads on atmospheric temperature, impacts of kilometre-scale urban areas on the diurnal temperature cycle in cities, and better propagation and symmetry characteristics of the Madden–Julian Oscillation.…”
    Get full text
    Article
  9. 609

    Data supporting the North Atlantic Climate System Integrated Study (ACSIS) programme, including atmospheric composition; oceanographic and sea-ice observations (2016–2022); and out... by A. T. Archibald, A. T. Archibald, B. Sinha, M. R. Russo, M. R. Russo, E. Matthews, F. A. Squires, N. L. Abraham, N. L. Abraham, S. J.-B. Bauguitte, T. J. Bannan, T. G. Bell, D. Berry, L. J. Carpenter, H. Coe, H. Coe, A. Coward, P. Edwards, P. Edwards, D. Feltham, D. Heard, J. Hopkins, J. Hopkins, J. Keeble, J. Keeble, E. C. Kent, B. A. King, I. R. Lawrence, I. R. Lawrence, J. Lee, J. Lee, C. R. Macintosh, A. Megann, B. I. Moat, K. Read, K. Read, C. Reed, M. J. Roberts, R. Schiemann, D. Schroeder, T. J. Smyth, L. Temple, N. Thamban, L. Whalley, L. Whalley, S. Williams, H. Wu, M. Yang

    Published 2025-01-01
    “…The datasets described cover the North Atlantic Ocean, the atmosphere above it (including its composition), and Arctic sea ice.</p> <p>Atmospheric composition datasets include measurements from seven aircraft campaigns (45 flights in total, 0–10 km altitude range) in the northeastern Atlantic (<span class="inline-formula">∼</span> 15–55° N, <span class="inline-formula">∼</span> 40° W–5° E) made at intervals of 6 months to 2 years between February 2017 and May 2022. …”
    Get full text
    Article