Showing 101 - 120 results of 358,783 for search '"1"', query time: 0.60s Refine Results
  1. 101
  2. 102
  3. 103
  4. 104

    I will marry when i want / by Thiongo, Ngugi wa

    Published 1982
    View in OPAC
    Book
  5. 105
  6. 106
  7. 107
  8. 108

    Categories of (I,I)-Fuzzy Greedoids by Zhen-Yu Xiu, Fu-Gui Shi

    Published 2015-01-01
    “…The concepts of I-greedoids, fuzzifying greedoids, and (I,I)-fuzzy greedoids are introduced and feasibility preserving mappings between greedoids are defined. …”
    Get full text
    Article
  9. 109
  10. 110
  11. 111
  12. 112

    Dietary Tryptophan Requirement of Juvenile Hybrid Grouper (<i>Epinephelus fuscoguttatus</i>♀ <i>× E. lanceolatus</i>♂) by Jiaxian Chen, Xiaohui Dong, Qihui Yang, Shuyan Chi, Shuang Zhang, Beiping Tan, Junming Deng

    Published 2025-01-01
    “…A 10-week feeding study was conducted to examine the effects of dietary tryptophan (Trp) levels on the growth performance and protein metabolism of hybrid grouper (<i>Epinephelus fuscoguttatus</i>♀ × <i>E. lanceolatus</i>♂) with the aim of determining the optimal Trp requirement. …”
    Get full text
    Article
  13. 113
  14. 114

    Polymorphism of the <i>Rca2</i> anthracnose resistance gene in strawberry cultivars (<i>Fragaria × ananassa</i>) by A. S. Lyzhin, I. V. Lukyanchuk, E. V. Zhbanova

    Published 2019-06-01
    “…Anthracnose, caused by phytopathogenic fungi of the genus Colletotrichum, is one of the most important strawberry diseases. Strawberry yield losses from anthracnose lesions can reach 80%. …”
    Get full text
    Article
  15. 115
  16. 116
  17. 117
  18. 118
  19. 119

    Noether’s Problem for <i>p</i>-Groups with Abelian Normal Subgroups and Central <i>p</i>-Powers by Ivo M. Michailov, Ivailo A. Dimitrov

    Published 2024-12-01
    “…This paper addresses Noether’s problem for <i>p</i>-groups <i>G</i>, having an abelian normal subgroup of index <i>p</i>, under the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mi>p</mi></msup><mo>=</mo><mrow><mo>{</mo><msup><mi>g</mi><mi>p</mi></msup><mo>:</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo>}</mo></mrow><mo>≤</mo><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>—the center of <i>G</i>. …”
    Get full text
    Article
  20. 120