Analysis of the Influence of Different Turbulence Models on the Prediction of Vehicle Aerodynamic Performance
As global energy grows short and environmental governance pressure increases, the automotive industry, a major energy consumer and pollution emitter, must enhance vehicle aerodynamics to cut energy use and emissions. This study creates an open-domain and virtual wind tunnel dual-computational-domain...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/11/2803 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As global energy grows short and environmental governance pressure increases, the automotive industry, a major energy consumer and pollution emitter, must enhance vehicle aerodynamics to cut energy use and emissions. This study creates an open-domain and virtual wind tunnel dual-computational-domain setup. It optimizes mesh refinement and boundary conditions, and evaluates the k-ε, k-ω, and Detached Eddy Simulation (DES) turbulence models. These models predict vehicle aerodynamic resistance, lift, and wake flow structure. The k-ε model best predicts the steady-state drag coefficient (Cd) (error 0.0009). DES excels in transient conditions (Cd error −0.4%, lift coefficient Cl matching experiments). The k-ω model, with its near-wall flow capture ability, has the lowest lift prediction error (−2.7%). Moreover, open-domain simulations align more closely with real free-flow environments and experimental data than virtual wind tunnel simulations. Overall, the study clarifies the varying applicability of turbulence models in complex flows, and offers a basis for model selection and technical support for vehicle aerodynamic optimization. It is highly significant for reducing fuel consumption, boosting the range of new-energy vehicles, and promoting sustainable industry development. |
|---|---|
| ISSN: | 1996-1073 |