An approximation of the Hurwitz zeta function by a finite sum

We obtain the following version of the approximation of the Hurwitz zeta-function. Let σ ≥ 0 and |t| ≤ π x. Then ζ(s, α) = ∑0 ≤ n ≤ x 1/(n + α)s +{ (x + α)1−s}/(s − 1) + Θ ({7√2π−1 + 3}/xσ).

Saved in:
Bibliographic Details
Main Author: Ramūnas Garunkštis
Format: Article
Language:English
Published: Vilnius University Press 2003-12-01
Series:Lietuvos Matematikos Rinkinys
Online Access:https://www.journals.vu.lt/LMR/article/view/32314
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593167704129536
author Ramūnas Garunkštis
author_facet Ramūnas Garunkštis
author_sort Ramūnas Garunkštis
collection DOAJ
description We obtain the following version of the approximation of the Hurwitz zeta-function. Let σ ≥ 0 and |t| ≤ π x. Then ζ(s, α) = ∑0 ≤ n ≤ x 1/(n + α)s +{ (x + α)1−s}/(s − 1) + Θ ({7√2π−1 + 3}/xσ).
format Article
id doaj-art-ffeb55206ce64fae81e6ffb90ca03ef5
institution Kabale University
issn 0132-2818
2335-898X
language English
publishDate 2003-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-ffeb55206ce64fae81e6ffb90ca03ef52025-01-20T18:18:05ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2003-12-0143spec.10.15388/LMR.2003.32314An approximation of the Hurwitz zeta function by a finite sumRamūnas Garunkštis0Vilnius University We obtain the following version of the approximation of the Hurwitz zeta-function. Let σ ≥ 0 and |t| ≤ π x. Then ζ(s, α) = ∑0 ≤ n ≤ x 1/(n + α)s +{ (x + α)1−s}/(s − 1) + Θ ({7√2π−1 + 3}/xσ). https://www.journals.vu.lt/LMR/article/view/32314
spellingShingle Ramūnas Garunkštis
An approximation of the Hurwitz zeta function by a finite sum
Lietuvos Matematikos Rinkinys
title An approximation of the Hurwitz zeta function by a finite sum
title_full An approximation of the Hurwitz zeta function by a finite sum
title_fullStr An approximation of the Hurwitz zeta function by a finite sum
title_full_unstemmed An approximation of the Hurwitz zeta function by a finite sum
title_short An approximation of the Hurwitz zeta function by a finite sum
title_sort approximation of the hurwitz zeta function by a finite sum
url https://www.journals.vu.lt/LMR/article/view/32314
work_keys_str_mv AT ramunasgarunkstis anapproximationofthehurwitzzetafunctionbyafinitesum
AT ramunasgarunkstis approximationofthehurwitzzetafunctionbyafinitesum