Detection of surface defects in soybean seeds based on improved Yolov9

Abstract As one of the important indicators of soybean seed quality identification, the appearance of soybeans has always been of great concern to people, and in traditional detection, it is mainly through the naked eye to check whether there are defects on its surface. The field of machine learning...

Full description

Saved in:
Bibliographic Details
Main Authors: Chuanming Liu, Yifan Shen, Feng Mu, Haixia Long, Anas Bilal, Xia Yu, Qi Dai
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-92429-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract As one of the important indicators of soybean seed quality identification, the appearance of soybeans has always been of great concern to people, and in traditional detection, it is mainly through the naked eye to check whether there are defects on its surface. The field of machine learning, particularly deep learning technology, has undergone rapid advancements and development, making it possible to detect the defects of soybean seeds using deep learning technology. This method can effectively replace the traditional detection methods in the past and reduce the human resources consumption in this work, leading to decreased expenses associated with agricultural activities. In this paper, we propose a Yolov9-c-ghost-Forward model improved by introducing GhostConv, a lightweight convolutional module in GhostNet, which enhances the recognition of soybean seed images through grayscale conversion, filtering processing, image segmentation, morphological operations, etc. and greatly reduces the noise in them, to separate the soybean seeds from the original images. Based on the Yolov9 network, the soybean seed features are extracted, and the defects of soybean seeds are detected. Based on the experiments’ findings, the recall rate can reach 98.6%, and the mAP0.5 can reach 99.2%. This shows that the model can provide a solid theoretical foundation and technical support for agricultural breeding screening and agricultural development.
ISSN:2045-2322