A Mantis-Inspired Multi-Quadrupole Adaptive Landing Gear Design and Performance Study
This paper investigates and designs an adaptive landing gear inspired by the passive adaptation mechanism of the praying mantis on intricate landing surfaces to improve the landing safety of unmanned aerial vehicles (UAVs) in complicated terrain situations. A new passive adaptation structure utilizi...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Biomimetics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2313-7673/10/5/327 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates and designs an adaptive landing gear inspired by the passive adaptation mechanism of the praying mantis on intricate landing surfaces to improve the landing safety of unmanned aerial vehicles (UAVs) in complicated terrain situations. A new passive adaptation structure utilizing multiple mutually perpendicular four-bar mechanisms is developed to address the limitations of the typical fixed truss structure landing gear. The system employs a singular laser range sensor locking mechanism, thereby significantly diminishing the control and structural complexity. The design incorporates a parallelogram mechanism to achieve the adaptation of different height differences through the mechanism’s deformation. The buffer damping mechanism and locking mechanism are engineered to augment the safety of the landing process and enhance the energy recovery rate. The circuit design employs the STC32G and Keil C251 microcontroller for development, thus achieving the automatic control of the landing gear. The experimental results demonstrate that the adaptive landing gear suggested in this paper can successfully adjust to the complex landing surface and has a good energy recovery performance. This aids in the advancement of UAVs in the field of complex environment applications and offers a safe, dependable, and creative solution for UAV landing scenarios in complex terrains. |
|---|---|
| ISSN: | 2313-7673 |