Dual‐Modal Dielectric Elastomer System for Simultaneous Energy Harvesting and Actuation

Abstract Dielectric elastomers (DEs) have promising capabilities for soft electromechanical systems, including those for actuation and energy generation. However, their widespread application is restricted by electromechanical instability (EMI) and the requirement for high‐voltage operation. This st...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiyuan Zhang, Wenwei Huang, Shaodi Zheng, Jianbo Tan, Jinzhan Cheng, Jiancheng Cai, Shiju E, Zisheng Xu
Format: Article
Language:English
Published: Wiley 2025-02-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202410724
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Dielectric elastomers (DEs) have promising capabilities for soft electromechanical systems, including those for actuation and energy generation. However, their widespread application is restricted by electromechanical instability (EMI) and the requirement for high‐voltage operation. This study presents a dual‐modal DE system that effectively overcomes these limitations by leveraging a dual‐membrane structure. The proposed structure not only suppresses EMI through charge sharing but also enables simultaneous energy harvesting and actuation, enhancing the overall electrical performance of the system. The system demonstrated a remarkable improvement in output performance, exceeding that of traditional single‐modal DE generators by up to 30%. The practicality of the system is developed by integrating it into a mechanically powered soft robot capable of locomotion and environmental monitoring using a wireless temperature sensor. This study paves the way for the development of advanced DE‐based systems with enhanced stability, functionality, and potential for diverse applications in soft robotics, energy harvesting, and other areas that require coupled electromechanical capabilities.
ISSN:2198-3844