Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms

We investigate f-biharmonic submanifolds in T-space form, where we analyze different scenarios and provide necessary and sufficient conditions for f-biharmonicity. We also derive a non-existence result for f-biharmonic submanifolds where <inline-formula><math xmlns="http://www.w3.org/1...

Full description

Saved in:
Bibliographic Details
Main Authors: Md Aquib, Mohd Iqbal, Sarvesh Kumar Yadav
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/4/242
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850183757835796480
author Md Aquib
Mohd Iqbal
Sarvesh Kumar Yadav
author_facet Md Aquib
Mohd Iqbal
Sarvesh Kumar Yadav
author_sort Md Aquib
collection DOAJ
description We investigate f-biharmonic submanifolds in T-space form, where we analyze different scenarios and provide necessary and sufficient conditions for f-biharmonicity. We also derive a non-existence result for f-biharmonic submanifolds where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>Ω</mo></mrow></semantics></math></inline-formula> are tangents. Finally, we derive the Chen–Ricci inequality for submanifolds of <i>T</i>-space forms and provide the conditions under which this inequality becomes equality.
format Article
id doaj-art-feffdd7d1892421fa17e87f62107daef
institution OA Journals
issn 2075-1680
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-feffdd7d1892421fa17e87f62107daef2025-08-20T02:17:14ZengMDPI AGAxioms2075-16802025-03-0114424210.3390/axioms14040242Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space FormsMd Aquib0Mohd Iqbal1Sarvesh Kumar Yadav2Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 65892, Riyadh 11566, Saudi ArabiaDepartment of Mathematics, ARSD College, South Campus, University of Delhi, Delhi 110021, IndiaDepartment of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaWe investigate f-biharmonic submanifolds in T-space form, where we analyze different scenarios and provide necessary and sufficient conditions for f-biharmonicity. We also derive a non-existence result for f-biharmonic submanifolds where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>Ω</mo></mrow></semantics></math></inline-formula> are tangents. Finally, we derive the Chen–Ricci inequality for submanifolds of <i>T</i>-space forms and provide the conditions under which this inequality becomes equality.https://www.mdpi.com/2075-1680/14/4/242Chen–Ricci inequalityf-biharmonic submanifoldsT-space forms
spellingShingle Md Aquib
Mohd Iqbal
Sarvesh Kumar Yadav
Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms
Axioms
Chen–Ricci inequality
f-biharmonic submanifolds
T-space forms
title Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms
title_full Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms
title_fullStr Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms
title_full_unstemmed Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms
title_short Classification Results of <i>f</i>-Biharmonic Immersion in <i>T</i>-Space Forms
title_sort classification results of i f i biharmonic immersion in i t i space forms
topic Chen–Ricci inequality
f-biharmonic submanifolds
T-space forms
url https://www.mdpi.com/2075-1680/14/4/242
work_keys_str_mv AT mdaquib classificationresultsofifibiharmonicimmersioninitispaceforms
AT mohdiqbal classificationresultsofifibiharmonicimmersioninitispaceforms
AT sarveshkumaryadav classificationresultsofifibiharmonicimmersioninitispaceforms