Large-vocabulary forensic pathological analyses via prototypical cross-modal contrastive learning

Abstract Forensic pathology plays a vital role in determining the cause and manner of death through macroscopic and microscopic post-mortem examinations. However, the field faces challenges such as variability in outcomes, labor-intensive processes, and a shortage of skilled professionals. This pape...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen Shen, Chunfeng Lian, Wanqing Zhang, Fan Wang, Jianhua Zhang, Shuanliang Fan, Xin Wei, Gongji Wang, Kehan Li, Hongshu Mu, Hao Wu, Xinggong Liang, Jianhua Ma, Zhenyuan Wang
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-62060-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Forensic pathology plays a vital role in determining the cause and manner of death through macroscopic and microscopic post-mortem examinations. However, the field faces challenges such as variability in outcomes, labor-intensive processes, and a shortage of skilled professionals. This paper introduces SongCi, a visual-language model tailored for forensic pathology. Leveraging advanced prototypical cross-modal self-supervised contrastive learning, SongCi improves the accuracy, efficiency, and generalizability of forensic analyses. Pre-trained and validated on a large multi-center dataset comprising over 16 million high-resolution image patches, 2, 228 vision-language pairs from post-mortem whole slide images, gross key findings, and 471 unique diagnostic outcomes, SongCi demonstrates superior performance over existing multi-modal models and computational pathology foundation models in forensic tasks. It matches experienced forensic pathologists’ capabilities, significantly outperforms less experienced practitioners, and offers robust multi-modal explainability.
ISSN:2041-1723