Human Trajectory Imputation Model: A Hybrid Deep Learning Approach for Pedestrian Trajectory Imputation
Pedestrian trajectories are crucial for self-driving cars to plan their paths effectively. The sensors implanted in these self-driving vehicles, despite being state-of-the-art ones, often face inaccuracies in the perception of surrounding environments due to technical challenges in adverse weather c...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/2/745 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pedestrian trajectories are crucial for self-driving cars to plan their paths effectively. The sensors implanted in these self-driving vehicles, despite being state-of-the-art ones, often face inaccuracies in the perception of surrounding environments due to technical challenges in adverse weather conditions, interference from other vehicles’ sensors and electronic devices, and signal reception failure, leading to incompleteness in the trajectory data. But for real-time decision making for autonomous driving, trajectory imputation is no less crucial. Previous attempts to address this issue, such as statistical inference and machine learning approaches, have shown promise. Yet, the landscape of deep learning is rapidly evolving, with new and more robust models emerging. In this research, we have proposed an encoder–decoder architecture, the Human Trajectory Imputation Model, coined HTIM, to tackle these challenges. This architecture aims to fill in the missing parts of pedestrian trajectories. The model is evaluated using the Intersection drone the inD dataset, containing trajectory data at suitable altitudes, preserving naturalistic pedestrian behavior with varied dataset sizes. To assess the effectiveness of our model, we utilize L1, MSE, and quantile and ADE loss. Our experiments demonstrate that HTIM outperforms the majority of the state-of-the-art methods in this field, thus indicating its superior performance in imputing pedestrian trajectories. |
---|---|
ISSN: | 2076-3417 |